Darbandi Mohammad Reza, Darbandi Mahsa, Darbandi Sara, Bado Igor, Hadizadeh Mohammad, Khorram Khorshid Hamid Reza
School of Computing, University of Georgia, Athens, GA, USA.
Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran.
Eur J Cancer. 2024 Sep;209:114227. doi: 10.1016/j.ejca.2024.114227. Epub 2024 Jul 15.
This article delves into the potential of artificial intelligence (AI) to enhance early breast cancer (BC) detection for improved treatment outcomes and patient care. Utilizing a multimethod approach comprising literature review and experiments, the study systematically reviewed 310 articles utilizing 30 diverse datasets. Among the techniques assessed, recurrent neural network (RNN) emerged as the most accurate, achieving 98.58 % accuracy, followed by genetic principles (GP), transfer learning (TL), and artificial neural networks (ANNs), with accuracies exceeding 96 %. While conventional machine learning (ML) methods demonstrated accuracies above 90 %, DL techniques outperformed them. Evaluation of BC diagnostic models using the Wisconsin breast cancer dataset (WBCD) highlighted logistic regression (LR) and support vector machine (SVM) as the most accurate predictors, with minimal errors for clinical data. Conversely, decision trees (DT) exhibited higher error rates due to overfitting, emphasizing the importance of algorithm selection for complex datasets. Analysis of ultrasound images underscored the significance of preprocessing, while histopathological image analysis using convolutional neural networks (CNNs) demonstrated robust classification capabilities. These findings underscore the transformative potential of ML and DL in BC diagnosis, offering automated, accurate, and accessible diagnostic tools. Collaboration among stakeholders is crucial for further advancements in BC detection methods.
本文深入探讨了人工智能(AI)在增强早期乳腺癌(BC)检测方面的潜力,以改善治疗效果和患者护理。该研究采用了包括文献综述和实验在内的多方法途径,系统地回顾了利用30个不同数据集的310篇文章。在所评估的技术中,递归神经网络(RNN)最为准确,准确率达到98.58%,其次是遗传原理(GP)、迁移学习(TL)和人工神经网络(ANNs),准确率超过96%。虽然传统机器学习(ML)方法的准确率高于90%,但深度学习(DL)技术表现更优。使用威斯康星乳腺癌数据集(WBCD)对BC诊断模型进行评估,结果表明逻辑回归(LR)和支持向量机(SVM)是最准确的预测器,临床数据的误差最小。相反,决策树(DT)由于过拟合而表现出较高的错误率,这强调了针对复杂数据集选择算法的重要性。对超声图像的分析强调了预处理的重要性,而使用卷积神经网络(CNN)进行的组织病理学图像分析则显示出强大的分类能力。这些发现强调了ML和DL在BC诊断中的变革潜力,提供了自动化、准确且易于使用的诊断工具。利益相关者之间的合作对于BC检测方法的进一步发展至关重要。