Suppr超能文献

MCF-SMSIS:用于立体匹配和手术器械分割的具有互补功能的多任务处理。

MCF-SMSIS: Multi-tasking with complementary functions for stereo matching and surgical instrument segmentation.

机构信息

School of Microelectronics, Shanghai University, Shanghai, China; Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Comput Biol Med. 2024 Sep;179:108923. doi: 10.1016/j.compbiomed.2024.108923. Epub 2024 Jul 24.

Abstract

Stereo matching and instrument segmentation of laparoscopic surgical scenarios are key tasks in robotic surgical automation. Many researchers have been studying the two tasks separately for stereo matching and instrument segmentation. However, the relationship between these two tasks is often neglected. In this paper, we propose a model framework for multi-tasking with complementary functions for stereo matching and surgical instrument segmentation (MCF-SMSIS). We aim to complement the features of instrument prediction segmentation to the parallax matching block of stereo matching. We also propose two new evaluation metrics (MINPD and MAXPD) for assessing how well the parallax range matches the migrated domain when the model used for the stereo matching task undergoes domain migration. We performed stereo matching experiments on the SCARED , SERV-CT dataset as well as instrumentation segmentation experiments on the AutoLaparo dataset. The results demonstrate the effectiveness of the proposed method. In particular, stereo matching supplemented with instrument features reduced EPE, >3px and RMSE Depth in the surgical instrument section by 9.5%, 12.7% and 6.51%, respectively. The instrumentation segmentation performance also achieves a DSC value of 0.9233. Moreover, MCF-SMSIS takes only 0.14 s to infer a set of images. The model code and model weights for each stage are available from https://github.com/wurenkai/MCF-SMSIS.

摘要

立体匹配和腹腔镜手术场景中的器械分割是机器人手术自动化的关键任务。许多研究人员已经分别研究了立体匹配和器械分割这两个任务。然而,这两个任务之间的关系往往被忽视。在本文中,我们提出了一种用于立体匹配和手术器械分割的多任务模型框架(MCF-SMSIS),具有互补功能。我们旨在将器械预测分割的特征补充到立体匹配的视差匹配块中。我们还提出了两个新的评估指标(MINPD 和 MAXPD),用于评估在立体匹配任务中使用的模型经历域迁移时视差范围与迁移域的匹配程度。我们在 SCARED、SERV-CT 数据集上进行了立体匹配实验,在 AutoLaparo 数据集上进行了器械分割实验。结果表明了所提出方法的有效性。特别是,通过在立体匹配中补充器械特征,手术器械部分的 EPE、>3px 和 RMSE Depth 分别减少了 9.5%、12.7%和 6.51%。器械分割性能也达到了 0.9233 的 DSC 值。此外,MCF-SMSIS 仅需 0.14 秒即可推断一组图像。每个阶段的模型代码和模型权重可从 https://github.com/wurenkai/MCF-SMSIS 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验