Ma Yaru, Liu Yuying, Chen Xin, Zheng Zhongqing, Wang Yufeng, Zuo Siyang
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China.
Med Biol Eng Comput. 2025 Sep 9. doi: 10.1007/s11517-025-03440-9.
Surgical instrument segmentation plays an important role in robotic autonomous surgical navigation systems as it can accurately locate surgical instruments and estimate their posture, which helps surgeons understand the position and orientation of the instruments. However, there are still some problems affecting segmentation accuracy, like insufficient attention to the edges and center of surgical instruments, insufficient usage of low-level feature details, etc. To address these issues, a lightweight network for surgical instrument segmentation in gastrointestinal (GI) endoscopy (GESur_Net) is proposed. The pixel data aggregation (PDA) mechanism is proposed to analyze the pixel value distribution in the feature map to obtain the importance of each feature channel. The skip connection attention (SK_A) block is proposed to enhance the attention on critical regions of the surgical instruments. The global guidance attention (GGA) block is proposed to fuse high-level semantic information with low-level detailed features, enabling the acquisition of both fine-grained resolution and global semantic information. In addition, we constructed a new dataset, the Gastrointestinal Endoscopic Instrument (GEI) dataset, hoping to provide valuable resources for future research. Extensive experiments conducted on our presented GEI dataset and the Kvasir-instrument dataset demonstrate that the proposed GESur_Net increases the segmentation accuracy and outperforms state-of-the-art segmentation models.
手术器械分割在机器人自主手术导航系统中起着重要作用,因为它可以准确地定位手术器械并估计其姿态,这有助于外科医生了解器械的位置和方向。然而,仍然存在一些影响分割精度的问题,例如对手术器械边缘和中心的关注不足、对低级特征细节的利用不足等。为了解决这些问题,提出了一种用于胃肠道(GI)内窥镜手术器械分割的轻量级网络(GESur_Net)。提出了像素数据聚合(PDA)机制,以分析特征图中的像素值分布,从而获得每个特征通道的重要性。提出了跳跃连接注意力(SK_A)块,以增强对手术器械关键区域的注意力。提出了全局引导注意力(GGA)块,以融合高级语义信息和低级详细特征,从而能够同时获取细粒度分辨率和全局语义信息。此外,我们构建了一个新的数据集,即胃肠道内窥镜器械(GEI)数据集,希望为未来的研究提供有价值的资源。在我们提出的GEI数据集和Kvasir-instrument数据集上进行的大量实验表明,所提出的GESur_Net提高了分割精度,并且优于现有的分割模型。