Suppr超能文献

脑控步态训练器,具有视觉和本体感觉反馈。

Brain-actuated gait trainer with visual and proprioceptive feedback.

机构信息

School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 100191, People's Republic of China. Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics, Institute of Bioengineering and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech H4, 1202, Geneva, Switzerland.

出版信息

J Neural Eng. 2017 Oct;14(5):056017. doi: 10.1088/1741-2552/aa7df9. Epub 2017 Jul 11.

Abstract

OBJECTIVE

Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension.

APPROACH

We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects.

MAIN RESULTS

(i) For real-time classification, the average accuracy was [Formula: see text]% and [Formula: see text]% for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback ([Formula: see text]%) was significantly better than with visual feedback ([Formula: see text]%), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn.

SIGNIFICANCE

The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.

摘要

目的

脑机接口(BMI)已被提议应用于神经调节和神经康复的闭环应用中。本研究描述了不同反馈模式对基于脑电图的解码腿部屈伸运动想象(MI)的 BMI 性能的影响。

方法

我们在下肢步态训练器(legoPress)中进行了实验,九名健康受试者基于交叉设计参与了三个连续的实验。从离线会话中训练随机森林分类器,并分别使用视觉和本体感觉反馈进行在线测试。进行事后分类以评估反馈模式和学习效果(随时间的提高)对模拟基于试验的性能的影响。最后,我们进行了特征分析,以研究跨受试者的辨别能力和大脑模式调制。

主要结果

(i)对于实时分类,两个在线会话的平均准确率分别为[公式:见正文]%和[公式:见正文]%。结果明显高于随机水平,表明区分腿部伸展和弯曲的 MI 是可行的。(ii)对于事后分类,本体感觉反馈的性能[公式:见正文]%明显优于视觉反馈[公式:见正文]%,而没有明显的学习效果。(iii)我们报告了与每个反馈模式相关的个体辨别特征和大脑模式,尽管不能得出一般结论,但这些特征和模式在两种模式之间存在差异。

意义

该研究报告了一种闭环脑控步态训练器,作为神经康复设备的概念验证。我们报告了以直观自然的方式解码下肢运动的可行性。据我们所知,这是第一项在线研究讨论反馈模式在下肢 MI 解码中的作用。我们的研究结果表明,本体感觉反馈优于视觉反馈,这可用于改善机器人辅助的运动训练和功能恢复策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验