Suppr超能文献

基于永久散射体干涉合成孔径雷达技术的机器学习算法的滑坡敏感性制图。

Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique.

机构信息

School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China.

State Key Laboratory of Hydraulic Engineering, Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300072, China.

出版信息

Sensors (Basel). 2022 Apr 19;22(9):3119. doi: 10.3390/s22093119.

Abstract

Landslides are the most catastrophic geological hazard in hilly areas. The present work intends to identify landslide susceptibility along Karakorum Highway (KKH) in Northern Pakistan, using landslide susceptibility mapping (LSM). To compare and predict the connection between causative factors and landslides, the random forest (RF), extreme gradient boosting (XGBoost), k nearest neighbor (KNN) and naive Bayes (NB) models were used in this research. Interferometric synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technology was used to explore the displacement movement of retrieved models. Initially, 332 landslide areas alongside the Karakorum Highway were found to generate the landslide inventory map using various data. The landslides were categorized into two sections for validation and training, of 30% and 70%. For susceptibility mapping, thirteen landslide-condition factors were created. The area under curve (AUC) of the receiver operating characteristic (ROC) curve technique was utilized for accuracy comparison, yielding 83.08, 82.15, 80.31, and 72.92% accuracy for RF, XGBoost, KNN, and NB, respectively. The PS-InSAR technique demonstrated a high deformation velocity along the line of sight (LOS) in model-sensitive areas. The PS-InSAR technique was used to evaluate the slope deformation velocity, which can be used to improve the LSM for the research region. The RF technique yielded superior findings, integrating with the PS-InSAR outcomes to provide the region with a new landslide susceptibility map. The enhanced model will help mitigate landslide catastrophes, and the outcomes may help ensure the roadway's safe functioning in the study region.

摘要

滑坡是丘陵地区最具灾难性的地质灾害。本研究旨在利用滑坡易发性制图(LSM)识别巴基斯坦北部喀喇昆仑公路(KKH)沿线的滑坡易发性。为了比较和预测诱发因素与滑坡之间的关系,本研究使用了随机森林(RF)、极端梯度增强(XGBoost)、k 最近邻(KNN)和朴素贝叶斯(NB)模型。干涉合成孔径雷达永久散射体干涉测量(PS-InSAR)技术用于探索所提出模型的位移运动。最初,使用各种数据在喀喇昆仑公路沿线发现了 332 个滑坡区,生成滑坡清单图。将滑坡分为验证和训练两个部分,分别占 30%和 70%。为了进行易发性制图,创建了 13 个滑坡条件因素。利用接收器工作特性(ROC)曲线技术的曲线下面积(AUC)进行准确性比较,RF、XGBoost、KNN 和 NB 的准确率分别为 83.08%、82.15%、80.31%和 72.92%。PS-InSAR 技术沿视线(LOS)在模型敏感区域显示出较高的变形速度。PS-InSAR 技术用于评估边坡变形速度,这可以用于改进研究区域的 LSM。RF 技术的发现更为出色,与 PS-InSAR 结果相结合,为该地区提供了一张新的滑坡易发性图。改进后的模型将有助于减轻滑坡灾害,研究结果将有助于确保该地区公路的安全运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fae6/9102666/4d57a952013b/sensors-22-03119-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验