Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
J Colloid Interface Sci. 2025 Jan;677(Pt A):400-415. doi: 10.1016/j.jcis.2024.07.241. Epub 2024 Jul 31.
Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (HO) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe/Fe redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.
化学动力学治疗(CDT)是一种新兴的癌症治疗方式,它利用多价金属元素通过 Fenton 或类 Fenton 反应将内源性过氧化氢(HO)转化为有毒的羟基自由基(•OH),从而引起癌细胞的氧化损伤。然而,CDT 的抗肿瘤效力在很大程度上受到肿瘤部位高谷胱甘肽(GSH)浓度和低催化效率的限制。CDT 与化疗的联合为克服这些限制提供了一种有前途的策略。在这项工作中,为了通过肿瘤靶向和 GSH 耗竭放大的化学动力学-化疗来增强抗肿瘤效力,制备了透明质酸(HA)/聚多巴胺(PDA)修饰的 Fe 掺杂 ZIF-8 纳米级金属有机骨架(FZ NMs),并利用其通过疏水作用、π-π 堆积和电荷相互作用来负载多柔比星(DOX),一种化疗药物。所获得的 HA/PDA 覆盖的载 DOX 的 FZ NMs(HPDFZ NMs)在弱酸性和富含 GSH 的环境中促进 DOX 和 Fe 的释放,并表现出酸激活的•OH 生成。通过高效的 CD44 介导的内吞作用,CT26 细胞内化的 HPDFZ NMs 不仅通过 PDA 介导的迈克尔加成与 Fe/Fe 氧化还原偶联消耗 GSH 显著增强•OH 积累,从而导致线粒体损伤和脂质过氧化,而且还实现了细胞内 DOX 的释放,从而引发细胞凋亡和铁死亡。重要的是,HPDFZ NMs 在低 DOX 剂量下在体内强烈抑制 CT26 肿瘤生长,且具有良好的生物安全性,因此在肿瘤特异性治疗中显示出有希望的潜力。
ACS Appl Mater Interfaces. 2021-12-1