Suppr超能文献

羧基化介孔硅纳米粒子-核酸嵌合体偶联物辅助递送 siRNA 和多柔比星有效治疗耐药性膀胱癌。

Carboxylated mesoporous silica nanoparticle-nucleic acid chimera conjugate-assisted delivery of siRNA and doxorubicin effectively treat drug-resistant bladder cancer.

机构信息

Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.

College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

出版信息

Biomed Pharmacother. 2024 Sep;178:117185. doi: 10.1016/j.biopha.2024.117185. Epub 2024 Jul 24.

Abstract

Chemotherapy is the main treatment for bladder cancer, but drug resistance and side effects limit its application and therapeutic effect. Herein, we constructed doxorubicin (DOX)/COOH-mesoporous silica nanoparticle/polyethylenimine (PEI)/nucleic acid chimeras (DOX/MSN/Chimeras) to reduce the toxicity of chemotherapy drugs and the resistance of bladder cancer cells. Transmission electron microscopy showed that PEI was coated on the DOX/MSN/BSA nanoparticles with a diameter of about 150 nm. DOX/MSN/PEI could control DOX release for over 48 h, and the sudden release rate was significantly lower than DOX/MSN. Immunohistochemical results showed that DOX/MSN/Chimera specifically bound to bladder cancer cells, and markedly inhibited PI3K expression and proliferation of DOX-resistant bladder cancer cells. DOX/MSN/Chimera promoted the apoptosis of drug-resistant bladder cancer cells, which was superior to DOX/MSN/Aptamer or DOX/MSN. We further carried out animal experiments and found that DOX/MSN/Chimera could reduce the volume of transplanted tumors in vivo. Compared with DOX/MSN/Aptamer group, the proliferation rate was significantly decreased and the proportion of apoptotic cells was highly increased. Through the histological observation of kidneys and lungs, we believed that DOX/MSN/Chimera can effectively reduce the damage of chemotherapy drugs to normal tissues. In conclusion, we constructed a COOH-MSN/nucleic acid chimera conjugate for the targeted delivery of siRNA and anti-cancer drugs. Our study provides a new method for personalized and targeted treatment of drug-resistant bladder cancer.

摘要

化疗是膀胱癌的主要治疗方法,但耐药性和副作用限制了其应用和治疗效果。在此,我们构建了阿霉素(DOX)/COOH-介孔硅纳米颗粒/聚乙烯亚胺(PEI)/核酸嵌合体(DOX/MSN/嵌合体),以降低化疗药物的毒性和膀胱癌细胞的耐药性。透射电子显微镜显示,PEI 被包覆在 DOX/MSN/BSA 纳米颗粒上,直径约为 150nm。DOX/MSN/PEI 可以控制 DOX 释放超过 48h,且突释率明显低于 DOX/MSN。免疫组化结果表明,DOX/MSN/嵌合体特异性结合膀胱癌细胞,并显著抑制了耐药膀胱癌细胞中 PI3K 的表达和增殖。DOX/MSN/嵌合体促进耐药膀胱癌细胞凋亡,优于 DOX/MSN/Aptamer 或 DOX/MSN。我们进一步进行了动物实验,发现 DOX/MSN/嵌合体可以减少体内移植瘤的体积。与 DOX/MSN/Aptamer 组相比,增殖率明显降低,凋亡细胞比例显著升高。通过对肾脏和肺部的组织学观察,我们认为 DOX/MSN/嵌合体可以有效降低化疗药物对正常组织的损伤。总之,我们构建了一种 COOH-MSN/核酸嵌合体偶联物,用于 siRNA 和抗癌药物的靶向递送。我们的研究为耐药性膀胱癌的个体化和靶向治疗提供了新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验