Suppr超能文献

脑机接口算法的基准测试:黎曼方法与卷积神经网络。

Benchmarking brain-computer interface algorithms: Riemannian approaches vs convolutional neural networks.

机构信息

Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna, Austria.

Data Science Network @ Uni Vienna, University of Vienna, Vienna, Austria.

出版信息

J Neural Eng. 2024 Aug 21;21(4). doi: 10.1088/1741-2552/ad6793.

Abstract

To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms.We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings.We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses.The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences.

摘要

迄今为止,发表的文献中仍然缺乏对基于 EEG 的脑机接口的黎曼解码方法与深度卷积神经网络的全面比较。我们使用 MOABB(所有脑机接口基准的母亲)来解决这一研究空白,通过在广泛的 EEG 数据集(包括运动想象、P300 和稳态视觉诱发电位范式)上比较新的卷积神经网络和最先进的黎曼方法,来解决这一研究空白。我们系统地评估了卷积神经网络(特别是 EEGNet、浅层 ConvNet 和深层 ConvNet)与 MOABB 处理管道中的成熟黎曼解码方法的性能。该评估包括会话内、跨会话和跨受试者方法,以对模型有效性进行实际分析,并找到一种在不同实验设置下表现良好的整体解决方案。我们发现,在会话内、跨会话和跨受试者分析中,卷积神经网络和黎曼方法之间的解码性能没有显著差异。结果表明,在使用传统脑机接口范式时,在许多实验设置中,在 CNN 和黎曼方法之间进行选择可能不会对解码性能产生重大影响。这些发现为研究人员提供了根据实施难易程度、计算效率或个人偏好等因素选择解码方法的灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验