Suppr超能文献

基于深度去噪先验的松弛迭代 Tikhonov 方法在低计数 PET 图像重建中的应用。

Deep denoiser prior driven relaxed iterated Tikhonov method for low-count PET image restoration.

机构信息

School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, People's Republic of China.

出版信息

Phys Med Biol. 2024 Aug 5;69(16). doi: 10.1088/1361-6560/ad67a3.

Abstract

. Low-count positron emission tomography (PET) imaging is an efficient way to promote more widespread use of PET because of its short scan time and low injected activity. However, this often leads to low-quality PET images with clinical image reconstruction, due to high noise and blurring effects. Existing PET image restoration (IR) methods hinder their own restoration performance due to the semi-convergence property and the lack of suitable denoiser prior.. To overcome these limitations, we propose a novel deep plug-and-play IR method called Deep denoiser Prior driven Relaxed Iterated Tikhonov method (DP-RI-Tikhonov). Specifically, we train a deep convolutional neural network denoiser to generate a flexible deep denoiser prior to handle high noise. Then, we plug the deep denoiser prior as a modular part into a novel iterative optimization algorithm to handle blurring effects and propose an adaptive parameter selection strategy for the iterative optimization algorithm.. Simulation results show that the deep denoiser prior plays the role of reducing noise intensity, while the novel iterative optimization algorithm and adaptive parameter selection strategy can effectively eliminate the semi-convergence property. They enable DP-RI-Tikhonov to achieve an average quantitative result (normalized root mean square error, structural similarity) of (0.1364, 0.9574) at the stopping iteration, outperforming a conventional PET IR method with an average quantitative result of (0.1533, 0.9523) and a state-of-the-art deep plug-and-play IR method with an average quantitative result of (0.1404, 0.9554). Moreover, the advantage of DP-RI-Tikhonov becomes more obvious at the last iteration. Experiments on six clinical whole-body PET images further indicate that DP-RI-Tikhonov successfully reduces noise intensity and recovers fine details, recovering sharper and more uniform images than the comparison methods.. DP-RI-Tikhonov's ability to reduce noise intensity and effectively eliminate the semi-convergence property overcomes the limitations of existing methods. This advancement may have substantial implications for other medical IR.

摘要

低计数正电子发射断层扫描 (PET) 成像因其扫描时间短和注入活性低而成为促进 PET 更广泛应用的有效方法。然而,由于高噪声和模糊效应,这通常会导致临床图像重建的低质量 PET 图像。现有的 PET 图像恢复 (IR) 方法由于半收敛特性和缺乏合适的去噪器先验,阻碍了自身的恢复性能。为了克服这些限制,我们提出了一种新的深度即插即用 IR 方法,称为深度去噪器驱动的松弛迭代托伊金方法 (DP-RI-Tikhonov)。具体来说,我们训练一个深度卷积神经网络去噪器来生成一个灵活的深度去噪器先验来处理高噪声。然后,我们将深度去噪器先验作为一个模块化部分插入到一个新的迭代优化算法中,以处理模糊效应,并为迭代优化算法提出一个自适应参数选择策略。模拟结果表明,深度去噪器先验起到了降低噪声强度的作用,而新型迭代优化算法和自适应参数选择策略可以有效地消除半收敛特性。它们使 DP-RI-Tikhonov 在停止迭代时达到平均定量结果(归一化均方根误差,结构相似性)(0.1364,0.9574),优于传统的 PET IR 方法(平均定量结果为 0.1533,0.9523)和最先进的深度即插即用 IR 方法(平均定量结果为 0.1404,0.9554)。此外,DP-RI-Tikhonov 的优势在最后迭代时变得更加明显。对六张临床全身 PET 图像的实验进一步表明,DP-RI-Tikhonov 成功地降低了噪声强度并恢复了精细细节,恢复的图像比比较方法更清晰、更均匀。DP-RI-Tikhonov 降低噪声强度和有效消除半收敛特性的能力克服了现有方法的局限性。这一进展可能对其他医学 IR 具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验