School of Mathematical and Physical Sciences, Macquarie University, Australia.
Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
Stat Methods Med Res. 2024 Sep;33(9):1531-1545. doi: 10.1177/09622802241262526. Epub 2024 Jul 25.
The cause-specific hazard Cox model is widely used in analyzing competing risks survival data, and the partial likelihood method is a standard approach when survival times contain only right censoring. In practice, however, interval-censored survival times often arise, and this means the partial likelihood method is not directly applicable. Two common remedies in practice are (i) to replace each censoring interval with a single value, such as the middle point; or (ii) to redefine the event of interest, such as the time to diagnosis instead of the time to recurrence of a disease. However, the mid-point approach can cause biased parameter estimates. In this article, we develop a penalized likelihood approach to fit semi-parametric cause-specific hazard Cox models, and this method is general enough to allow left, right, and interval censoring times. Penalty functions are used to regularize the baseline hazard estimates and also to make these estimates less affected by the number and location of knots used for the estimates. We will provide asymptotic properties for the estimated parameters. A simulation study is designed to compare our method with the mid-point partial likelihood approach. We apply our method to the Aspirin in Reducing Events in the Elderly (ASPREE) study, illustrating an application of our proposed method.
基于竞争风险的 Cox 比例风险模型被广泛应用于分析存在竞争风险的生存数据,在生存时间仅存在右删失的情况下,偏似然法是一种标准方法。然而,在实际中,常常会出现区间删失的生存时间,这意味着偏似然法不能直接应用。在实际中,两种常见的补救方法是:(i)用单一值代替每个删失区间,如中点;或者(ii)重新定义感兴趣的事件,如疾病复发的时间而不是诊断的时间。然而,中点方法可能会导致参数估计有偏。在本文中,我们开发了一种惩罚似然法来拟合半参数基于原因的 Cox 比例风险模型,这种方法足够通用,可以允许左删失、右删失和区间删失的生存时间。惩罚函数用于正则化基线风险估计,同时减少这些估计受结点数量和位置的影响。我们将提供估计参数的渐近性质。设计了一个模拟研究来比较我们的方法与中点偏似然法。我们将我们的方法应用于降低老年人事件风险的阿司匹林研究(ASPREE),说明了我们提出的方法的应用。