Suppr超能文献

一种针对任意删失和截断数据的惩罚似然方法:应用于特定年龄的痴呆发病率

A penalized likelihood approach for arbitrarily censored and truncated data: application to age-specific incidence of dementia.

作者信息

Joly P, Commenges D, Letenneur L

机构信息

INSERM U 330, Université de Bordeaux II, France.

出版信息

Biometrics. 1998 Mar;54(1):185-94.

PMID:9574965
Abstract

The Cos model is the model of choice when analyzing survival data presenting only right censoring and left truncation. There is a need for methods that can accommodate more complex observation schemes involving general censoring and truncation. In addition, it is important in many epidemiological applications to have a smooth estimate of the hazard function. We show that the penalized likelihood approach gives a solution to these problems. The solution of the maximum of the penalized likelihood is approximated on a basis of splines. The smoothing parameter is estimated using approximate cross-validation; confidence bands can be given. A simulation study shows that this approach gives better results than the smoothed Nelson-Aalen estimator. We apply this method to the analysis of data from a large cohort study on cerebral aging. The age-specific incidence of dementia is estimated and risk factors of dementia studied.

摘要

当分析仅呈现右删失和左截断的生存数据时,Cos模型是首选模型。需要有能够适应涉及一般删失和截断的更复杂观察方案的方法。此外,在许多流行病学应用中,对风险函数进行平滑估计很重要。我们表明,惩罚似然方法为这些问题提供了一个解决方案。惩罚似然最大值的解在样条的基础上进行近似。使用近似交叉验证估计平滑参数;可以给出置信带。一项模拟研究表明,这种方法比平滑的Nelson-Aalen估计量给出更好的结果。我们将此方法应用于一项关于脑老化的大型队列研究的数据的分析。估计了特定年龄的痴呆发病率,并研究了痴呆的风险因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验