Suppr超能文献

具有左截断和区间删失数据的贝叶斯加速失效时间模型的组套索先验。

Group lasso priors for Bayesian accelerated failure time models with left-truncated and interval-censored data.

机构信息

Massachusetts General Hospital, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Stat Methods Med Res. 2024 Aug;33(8):1412-1423. doi: 10.1177/09622802241262523. Epub 2024 Jul 25.

Abstract

An important task in health research is to characterize time-to-event outcomes such as disease onset or mortality in terms of a potentially high-dimensional set of risk factors. For example, prospective cohort studies of Alzheimer's disease (AD) typically enroll older adults for observation over several decades to assess the long-term impact of genetic and other factors on cognitive decline and mortality. The accelerated failure time model is particularly well-suited to such studies, structuring covariate effects as "horizontal" changes to the survival quantiles that conceptually reflect shifts in the outcome distribution due to lifelong exposures. However, this modeling task is complicated by the enrollment of adults at differing ages, and intermittent follow-up visits leading to interval-censored outcome information. Moreover, genetic and clinical risk factors are not only high-dimensional, but characterized by underlying grouping structures, such as by function or gene location. Such grouped high-dimensional covariates require shrinkage methods that directly acknowledge this structure to facilitate variable selection and estimation. In this paper, we address these considerations directly by proposing a Bayesian accelerated failure time model with a group-structured lasso penalty, designed for left-truncated and interval-censored time-to-event data. We develop an R package with a Markov chain Monte Carlo sampler for estimation. We present a simulation study examining the performance of this method relative to an ordinary lasso penalty and apply the proposed method to identify groups of predictive genetic and clinical risk factors for AD in the Religious Orders Study and Memory and Aging Project prospective cohort studies of AD and dementia.

摘要

在健康研究中,一个重要的任务是根据潜在的高维风险因素集来描述疾病发病或死亡率等事件时间结果。例如,阿尔茨海默病(AD)的前瞻性队列研究通常招募老年人进行几十年的观察,以评估遗传和其他因素对认知能力下降和死亡率的长期影响。加速失效时间模型特别适合于这类研究,将协变量的影响构建为生存分位数的“水平”变化,这些变化从概念上反映了由于终生暴露而导致的结果分布的变化。然而,这种建模任务由于成年人在不同年龄入组,以及间歇性的随访访问导致区间删失的结果信息而变得复杂。此外,遗传和临床风险因素不仅具有高维性,而且还具有潜在的分组结构,例如按功能或基因位置分组。这种分组的高维协变量需要收缩方法,直接承认这种结构,以促进变量选择和估计。在本文中,我们通过提出一种具有组结构 lasso 惩罚的贝叶斯加速失效时间模型来直接解决这些问题,该模型专为左截断和区间删失的事件时间数据设计。我们开发了一个带有马尔可夫链蒙特卡罗抽样器的 R 包用于估计。我们进行了一项模拟研究,考察了该方法相对于普通 lasso 惩罚的性能,并将所提出的方法应用于识别 AD 的宗教秩序研究和记忆与衰老项目前瞻性 AD 和痴呆队列研究中的预测遗传和临床风险因素的分组。

相似文献

1
Group lasso priors for Bayesian accelerated failure time models with left-truncated and interval-censored data.
Stat Methods Med Res. 2024 Aug;33(8):1412-1423. doi: 10.1177/09622802241262523. Epub 2024 Jul 25.
3
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.
IEEE J Transl Eng Health Med. 2025 Apr 10;13:158-173. doi: 10.1109/JTEHM.2025.3559693. eCollection 2025.
4
Selegiline for Alzheimer's disease.
Cochrane Database Syst Rev. 2003(1):CD000442. doi: 10.1002/14651858.CD000442.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Undernutrition as a risk factor for tuberculosis disease.
Cochrane Database Syst Rev. 2024 Jun 11;6(6):CD015890. doi: 10.1002/14651858.CD015890.pub2.
8
Pharmacotherapies for sleep disturbances in dementia.
Cochrane Database Syst Rev. 2016 Nov 16;11(11):CD009178. doi: 10.1002/14651858.CD009178.pub3.
9
Interventions to improve safe and effective medicines use by consumers: an overview of systematic reviews.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):CD007768. doi: 10.1002/14651858.CD007768.pub3.
10
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.
Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513.

本文引用的文献

1
Characterizing quantile-varying covariate effects under the accelerated failure time model.
Biostatistics. 2024 Apr 15;25(2):449-467. doi: 10.1093/biostatistics/kxac052.
2
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
3
Penalized regression for left-truncated and right-censored survival data.
Stat Med. 2021 Nov 10;40(25):5487-5500. doi: 10.1002/sim.9136. Epub 2021 Jul 24.
4
A unified approach to variable selection for Cox's proportional hazards model with interval-censored failure time data.
Stat Methods Med Res. 2021 Aug;30(8):1833-1849. doi: 10.1177/09622802211009259. Epub 2021 Jul 7.
5
Simultaneous Estimation and Variable Selection for Interval-Censored Data with Broken Adaptive Ridge Regression.
J Am Stat Assoc. 2020;115(529):204-216. doi: 10.1080/01621459.2018.1537922. Epub 2019 Apr 22.
6
Bi-level feature selection in high dimensional AFT models with applications to a genomic study.
Stat Appl Genet Mol Biol. 2019 Sep 17;18(5):/j/sagmb.2019.18.issue-5/sagmb-2019-0016/sagmb-2019-0016.xml. doi: 10.1515/sagmb-2019-0016.
7
Adaptive lasso for the Cox regression with interval censored and possibly left truncated data.
Stat Methods Med Res. 2020 Apr;29(4):1243-1255. doi: 10.1177/0962280219856238. Epub 2019 Jun 16.
8
Religious Orders Study and Rush Memory and Aging Project.
J Alzheimers Dis. 2018;64(s1):S161-S189. doi: 10.3233/JAD-179939.
9
Scalable Bayesian variable selection for structured high-dimensional data.
Biometrics. 2018 Dec;74(4):1372-1382. doi: 10.1111/biom.12882. Epub 2018 May 8.
10
Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering.
Bioinformatics. 2017 Nov 15;33(22):3558-3566. doi: 10.1093/bioinformatics/btx464.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验