Wu Shutao, Cheng Jia, Xiang Yang, Tu Yunchuan, Huang Xun, Wei Zidong
Center of Advanced Electrochemical Energy, State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 China
Chem Sci. 2024 Jun 22;15(29):11521-11527. doi: 10.1039/d4sc02280g. eCollection 2024 Jul 24.
The industrial production of nylon 6 usually includes synthesizing caprolactam through the cyclohexanone-hydroxylamine route. This approach requires complex protocols, elevated temperatures, noble metal catalysts and the use of hazardous strong acids or hydroxylamine. Additionally, a significant quantity of ammonium sulphate is generated during the synthesis procedure. This study aims to develop an electrochemical reduction system for the conversion of ADN generated from the electrolytic dimerization of acrylonitrile (AN) to 6-aminocapronitrile (ACN), a precursor of nylon 6. This system utilizes a cost-effective Cu nanomaterial under eco-friendly conditions, avoiding lengthy and harsh processes, eliminating NHOH use, and reducing low-value ammonium sulfate generation. This electrosynthesis method maintains approximately 85% ACN selectivity at 40-100 mA cm when passing the charge required for 37% theoretical conversion. When extending the reaction time to achieve an 80% conversion, ACN selectivity still reached 81.6%, exceeding the theoretical value of non-selective hydrogenation by 20%. The pseudo-first-order reaction kinetic modeling proves that the reaction rate constant for ADN hydrogenation is significantly greater than that for ACN hydrogenation, highlighting the selectivity advantage of the system for ACN. This study establishes the foundation for developing a continuous electrolysis process to produce the nylon 6 precursor from AN feedstock.
尼龙6的工业生产通常包括通过环己酮 - 羟胺路线合成己内酰胺。这种方法需要复杂的流程、高温、贵金属催化剂以及使用危险的强酸或羟胺。此外,在合成过程中会产生大量硫酸铵。本研究旨在开发一种电化学还原系统,用于将丙烯腈(AN)电解二聚生成的偶氮二腈(ADN)转化为尼龙6的前体6 - 氨基己腈(ACN)。该系统在环保条件下利用具有成本效益的铜纳米材料,避免了冗长且苛刻的过程,消除了羟胺的使用,并减少了低价值硫酸铵的产生。当通过理论转化率37%所需的电荷量时,这种电合成方法在40 - 100 mA cm下保持约85%的ACN选择性。当延长反应时间以实现80%的转化率时,ACN选择性仍达到81.6%,超过非选择性氢化理论值20%。准一级反应动力学模型证明,ADN氢化的反应速率常数明显大于ACN氢化的反应速率常数,突出了该系统对ACN的选择性优势。本研究为开发从AN原料生产尼龙6前体的连续电解工艺奠定了基础。