Wiebe Anton, Gieshoff Tile, Möhle Sabine, Rodrigo Eduardo, Zirbes Michael, Waldvogel Siegfried R
Max Planck Graduate Center, Staudingerweg 9, 55128, Mainz, Germany.
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
Angew Chem Int Ed Engl. 2018 May 14;57(20):5594-5619. doi: 10.1002/anie.201711060. Epub 2018 Mar 7.
The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.
目前,电在有机合成中的直接应用正经历复兴。更多专注于合成领域的实验室正在利用新颖和更传统的概念,为这种小众技术的更广泛应用铺平道路。由于仅电子作为试剂,有效地避免了试剂废物的产生。此外,化学计量试剂可以再生,并允许以电催化方式进行转化。然而,有机电转化的应用不仅仅是将废物足迹最小化,它还会产生本质上安全的过程,减少许多合成步骤的数量,允许更温和的反应条件,提供获得所需结构实体的替代方法,并创造知识产权(IP)空间。当电力来自可再生资源时,这种过剩电力可直接用作终端氧化剂或还原剂,提供一种超可持续且极具吸引力的技术。本综述调查了电化学合成的最新进展,这些进展将影响该领域的未来。