Suppr超能文献

YOLOv8-segANDcal:大豆胚根特征的分割、提取与计算

YOLOv8-segANDcal: segmentation, extraction, and calculation of soybean radicle features.

作者信息

Wu Yijie, Li Zhengjun, Jiang Haoyu, Li Qianyun, Qiao Jinxin, Pan Feng, Fu Xiuqing, Guo Biao

机构信息

College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China.

College of Engineering, Nanjing Agricultural University, Nanjing, China.

出版信息

Front Plant Sci. 2024 Jul 11;15:1425100. doi: 10.3389/fpls.2024.1425100. eCollection 2024.

Abstract

The high-throughput and full-time acquisition of images of crop growth processes, and the analysis of the morphological parameters of their features, is the foundation for achieving fast breeding technology, thereby accelerating the exploration of germplasm resources and variety selection by crop breeders. The evolution of embryonic soybean radicle characteristics during germination is an important indicator of soybean seed vitality, which directly affects the subsequent growth process and yield of soybeans. In order to address the time-consuming and labor-intensive manual measurement of embryonic radicle characteristics, as well as the issue of large errors, this paper utilizes continuous time-series crop growth vitality monitoring system to collect full-time sequence images of soybean germination. By introducing the attention mechanism SegNext_Attention, improving the Segment module, and adding the CAL module, a YOLOv8-segANDcal model for the segmentation and extraction of soybean embryonic radicle features and radicle length calculation was constructed. Compared to the YOLOv8-seg model, the model respectively improved the detection and segmentation of embryonic radicles by 2% and 1% in mAP, and calculated the contour features and radicle length of the embryonic radicles, obtaining the morphological evolution of the embryonic radicle contour features over germination time. This model provides a rapid and accurate method for crop breeders and agronomists to select crop varieties.

摘要

高通量、全时段获取作物生长过程图像,并分析其特征的形态参数,是实现快速育种技术的基础,从而加速作物育种工作者对种质资源的探索和品种选择。大豆萌发过程中胚根特征的演变是大豆种子活力的重要指标,直接影响大豆后续的生长进程和产量。为解决人工测量胚根特征耗时费力以及误差大的问题,本文利用连续时间序列作物生长活力监测系统采集大豆萌发的全时段序列图像。通过引入注意力机制SegNext_Attention、改进分割模块并添加CAL模块,构建了用于大豆胚根特征分割提取及胚根长度计算的YOLOv8-segANDcal模型。与YOLOv8-seg模型相比,该模型在平均精度均值(mAP)上分别将胚根检测和分割提高了2%和1%,并计算了胚根的轮廓特征和胚根长度,得到了胚根轮廓特征在萌发时间上的形态演变。该模型为作物育种工作者和农学家选择作物品种提供了一种快速准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e72e/11269219/e61f28ef72b3/fpls-15-1425100-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验