Suppr超能文献

用于大蒜根茎切割设备中目标检测的卷积神经网络

Convolutional Neural Network for Object Detection in Garlic Root Cutting Equipment.

作者信息

Yang Ke, Peng Baoliang, Gu Fengwei, Zhang Yanhua, Wang Shenying, Yu Zhaoyang, Hu Zhichao

机构信息

Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

出版信息

Foods. 2022 Jul 24;11(15):2197. doi: 10.3390/foods11152197.

Abstract

Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning-a convolutional neural network-is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research.

摘要

传统的手工切蒜根效率低下,且会引发食品安全问题。为开发食品加工设备,本研究提出了一种新颖且准确的基于深度学习——卷积神经网络的大蒜目标检测方法。基于轻量级和迁移学习的你只看一次(YOLO)算法,是用于单个大目标检测的最先进的计算机视觉方法。为检测蒜球,使用倒置残差模块和残差结构对YOLOv2模型进行了修改。基于具有不同亮度、表面附着物和形状的蒜球图像对修改后的模型进行训练,从而使检测器能够充分学习。通过比较不同训练参数的测试结果获得了最佳小批量和轮次。研究表明,IRM - YOLOv2优于经典神经网络的SqueezeNet、ShuffleNet和YOLOv2模型,以及YOLOv3和YOLOv4算法模型。IRM - YOLOv2的置信度得分、平均准确率、偏差、标准差、检测时间和存储空间分别为0.98228、99.2%、2.819像素、4.153、0.0356秒和24.2兆字节。此外,本研究为YOLO算法在食品研究中的应用提供了重要参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3207/9331909/0e72d6c226a7/foods-11-02197-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验