Seiffert S, Weber S, Sack U, Keller T
Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.
ACOMED statistik, Leipzig, Germany.
Front Mol Biosci. 2024 Jul 11;11:1335174. doi: 10.3389/fmolb.2024.1335174. eCollection 2024.
In laboratory medicine, measurement results are often expressed as proportions of concentrations or counts. These proportions have distinct mathematical properties that can lead to unexpected results when conventional parametric statistical methods are naively applied without due consideration in the analysis of method validation experiments, quality assessments, or clinical studies. In particular, data points near 0% or 100% can lead to misleading analytical conclusions. To avoid these problems, the logit transformation-defined as the natural logarithm of the proportion/(1-proportion)-is used. This transformation produces symmetric distributions centered at zero that extend infinitely in both directions without upper or lower bounds. As a result, parametric statistical methods can be used without introducing bias. Furthermore, homogeneity of variances (HoV) is given. The benefits of this technique are illustrated by two applications: (i) flow cytometry measurement results expressed as proportions and (ii) probabilities derived from multivariable models. In the first case, naive analyses within external quality assessment (EQA) evaluations that lead to inconsistent results are effectively corrected. Second, the transformation eliminates bias and variance heterogeneity, allowing for more effective precision estimation. In summary, the logit transformation ensures unbiased results in statistical analyses. Given the resulting homogeneity of variances, common parametric statistical methods can be implemented, potentially increasing the efficiency of the analysis.
在检验医学中,测量结果通常表示为浓度或计数的比例。这些比例具有独特的数学特性,在方法验证实验、质量评估或临床研究的分析中,如果在未充分考虑的情况下盲目应用传统的参数统计方法,可能会导致意想不到的结果。特别是,接近0%或100%的数据点可能会得出误导性的分析结论。为避免这些问题,采用了对数变换(定义为比例/(1 - 比例)的自然对数)。这种变换产生以零为中心的对称分布,向两个方向无限延伸,没有上限或下限。因此,可以使用参数统计方法而不会引入偏差。此外,方差齐性(HoV)也得到了满足。通过两个应用实例说明了该技术的优点:(i)以比例表示的流式细胞术测量结果和(ii)从多变量模型得出的概率。在第一种情况下,外部质量评估(EQA)评估中导致结果不一致的简单分析得到了有效纠正。其次,这种变换消除了偏差和方差异质性,从而可以进行更有效的精密度估计。总之,对数变换确保了统计分析结果的无偏性。鉴于由此产生的方差齐性,可以实施常见的参数统计方法,这可能会提高分析效率。