Suppr超能文献

基于信息几何的多元高斯系统的部分信息分解

A Partial Information Decomposition for Multivariate Gaussian Systems Based on Information Geometry.

作者信息

Kay Jim W

机构信息

School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK.

出版信息

Entropy (Basel). 2024 Jun 25;26(7):542. doi: 10.3390/e26070542.

Abstract

There is much interest in the topic of partial information decomposition, both in developing new algorithms and in developing applications. An algorithm, based on standard results from information geometry, was recently proposed by Niu and Quinn (2019). They considered the case of three scalar random variables from an exponential family, including both discrete distributions and a trivariate Gaussian distribution. The purpose of this article is to extend their work to the general case of multivariate Gaussian systems having vector inputs and a vector output. By making use of standard results from information geometry, explicit expressions are derived for the components of the partial information decomposition for this system. These expressions depend on a real-valued parameter which is determined by performing a simple constrained convex optimisation. Furthermore, it is proved that the theoretical properties of non-negativity, self-redundancy, symmetry and monotonicity, which were proposed by Williams and Beer (2010), are valid for the decomposition Iig derived herein. Application of these results to real and simulated data show that the Iig algorithm does produce the results expected when clear expectations are available, although in some scenarios, it can overestimate the level of the synergy and shared information components of the decomposition, and correspondingly underestimate the levels of unique information. Comparisons of the Iig and Idep (Kay and Ince, 2018) methods show that they can both produce very similar results, but interesting differences are provided. The same may be said about comparisons between the Iig and Immi (Barrett, 2015) methods.

摘要

无论是在开发新算法还是在开发应用程序方面,人们对部分信息分解这一主题都有浓厚的兴趣。牛和奎因(2019年)最近提出了一种基于信息几何标准结果的算法。他们考虑了来自指数族的三个标量随机变量的情况,包括离散分布和三变量高斯分布。本文的目的是将他们的工作扩展到具有向量输入和向量输出的多元高斯系统的一般情况。通过利用信息几何的标准结果,推导出了该系统部分信息分解各分量的显式表达式。这些表达式依赖于一个实值参数,该参数通过执行一个简单的约束凸优化来确定。此外,还证明了威廉姆斯和比尔(2010年)提出的非负性、自冗余性、对称性和单调性等理论性质对于本文推导的分解Iig是有效的。将这些结果应用于实际数据和模拟数据表明,当有明确预期时,Iig算法确实能产生预期的结果,尽管在某些情况下,它可能会高估分解的协同作用和共享信息分量的水平,相应地低估唯一信息的水平。Iig和Idep(凯和因斯,2018年)方法的比较表明,它们都能产生非常相似的结果,但也存在有趣的差异。Iig和Immi(巴雷特,2015年)方法之间的比较也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21be/11276306/ea3ad42474bf/entropy-26-00542-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验