Suppr超能文献

具有短程和远程相关性的动态过程的多尺度部分信息分解:理论及其在心血管控制中的应用。

Multiscale partial information decomposition of dynamic processes with short and long-range correlations: theory and application to cardiovascular control.

机构信息

Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Portugal.

Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal.

出版信息

Physiol Meas. 2022 Aug 12;43(8). doi: 10.1088/1361-6579/ac826c.

Abstract

In this work, an analytical framework for the multiscale analysis of multivariate Gaussian processes is presented, whereby the computation of Partial Information Decomposition measures is achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations.We consider physiological time series mapping the activity of the cardiac, vascular and respiratory systems in the field of Network Physiology. In this context, the multiscale representation of transfer entropy within the network of interactions among Systolic arterial pressure (S), respiration (R) and heart period (H), as well as the decomposition into unique, redundant and synergistic contributions, is obtained using a Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This novel approach allows to quantify the directed information flow accounting for the simultaneous presence of short-term dynamics and long-range correlations among the analyzed processes. Additionally, it provides analytical expressions for the computation of the information measures, by exploiting the theory of state space models. The approach is first illustrated in simulated VARFI processes and then applied to H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress.We demonstrate the ability of the VARFI modeling approach to account for the coexistence of short-term and long-range correlations in the study of multivariate processes. Physiologically, we show that postural stress induces larger redundant and synergistic effects from S and R to H at short time scales, while mental stress induces larger information transfer from S to H at longer time scales, thus evidencing the different nature of the two stressors.The proposed methodology allows to extract useful information about the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems, which cannot be observed using standard methods that do not consider long-range correlations.

摘要

在这项工作中,提出了一种用于多变量高斯过程的多尺度分析的分析框架,通过该框架可以计算部分信息分解度量,同时考虑短期动态和长程相关性。我们考虑了生理时间序列,这些序列映射了网络生理学中心脏、血管和呼吸系统的活动。在这种情况下,使用高斯过程的向量自回归分数积分(VARFI)框架,可以获得在收缩压(S)、呼吸(R)和心率(H)之间相互作用网络内的传递熵的多尺度表示,以及分解为独特、冗余和协同贡献。这种新方法允许量化考虑到所分析过程之间存在短期动态和长程相关性的有向信息流。此外,它通过利用状态空间模型理论,为信息度量的计算提供了分析表达式。该方法首先在模拟的 VARFI 过程中进行了说明,然后应用于在休息和心理和姿势应激期间监测的健康受试者的 H、S 和 R 时间序列。我们证明了 VARFI 建模方法在研究多变量过程时能够考虑短期和长程相关性的共存。从生理上看,我们表明姿势应激在短时间尺度上从 S 和 R 诱导更大的冗余和协同效应到 H,而心理应激在更长的时间尺度上诱导更大的 S 到 H 的信息传递,从而证明了两种应激源的不同性质。所提出的方法允许提取有关信息传递对耦合动力系统中短期和长程相关性之间平衡的依赖性的有用信息,这是使用不考虑长程相关性的标准方法无法观察到的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验