Shang Haikun, Zhao Zixuan, Li Jiawen, Wang Zhiming
Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China.
Entropy (Basel). 2024 Jun 27;26(7):551. doi: 10.3390/e26070551.
Partial discharge (PD) fault diagnosis is of great importance for ensuring the safe and stable operation of power transformers. To address the issues of low accuracy in traditional PD fault diagnostic methods, this paper proposes a novel method for the power transformer PD fault diagnosis. It incorporates the approximate entropy (ApEn) of symplectic geometry mode decomposition (SGMD) into the optimized bidirectional long short-term memory (BILSTM) neural network. This method extracts dominant PD features employing SGMD and ApEn. Meanwhile, it improves the diagnostic accuracy with the optimized BILSTM by introducing the golden jackal optimization (GJO). Simulation studies evaluate the performance of FFT, EMD, VMD, and SGMD. The results show that SGMD-ApEn outperforms other methods in extracting dominant PD features. Experimental results verify the effectiveness and superiority of the proposed method by comparing different traditional methods. The proposed method improves PD fault recognition accuracy and provides a diagnostic rate of 98.6%, with lower noise sensitivity.
局部放电(PD)故障诊断对于确保电力变压器的安全稳定运行至关重要。为了解决传统PD故障诊断方法准确性低的问题,本文提出了一种用于电力变压器PD故障诊断的新方法。该方法将辛几何模态分解(SGMD)的近似熵(ApEn)纳入优化的双向长短期记忆(BILSTM)神经网络。此方法利用SGMD和ApEn提取主导的PD特征。同时,通过引入金豺优化(GJO),利用优化后的BILSTM提高诊断准确性。仿真研究评估了快速傅里叶变换(FFT)、经验模态分解(EMD)、变分模态分解(VMD)和SGMD的性能。结果表明,SGMD-ApEn在提取主导PD特征方面优于其他方法。通过比较不同的传统方法,实验结果验证了所提方法的有效性和优越性。所提方法提高了PD故障识别准确率,提供了98.6%的诊断率,且噪声敏感度较低。