Oliveira Gessineide Sousa, Alves Tayroni Alencar, Alves Gladstone Alencar, Lima Francisco Welington, Plascak Joao Antonio
Dietrich Stauffer Computational Physics Laboratory, Departamento de Física, Universidade Federal do Piauí, Teresina 64049-550, PI, Brazil.
Departamento de Física, Universidade Estadual do Piauí, Teresina 64002-150, PI, Brazil.
Entropy (Basel). 2024 Jul 10;26(7):587. doi: 10.3390/e26070587.
The Biswas-Chatterjee-Sen (BChS) model of opinion dynamics has been studied on three-dimensional Solomon networks by means of extensive Monte Carlo simulations. Finite-size scaling relations for different lattice sizes have been used in order to obtain the relevant quantities of the system in the thermodynamic limit. From the simulation data it is clear that the BChS model undergoes a second-order phase transition. At the transition point, the critical exponents describing the behavior of the order parameter, the corresponding order parameter susceptibility, and the correlation length, have been evaluated. From the values obtained for these critical exponents one can confidently conclude that the BChS model in three dimensions is in a different universality class to the respective model defined on one- and two-dimensional Solomon networks, as well as in a different universality class as the usual Ising model on the same networks.
通过广泛的蒙特卡罗模拟,在三维所罗门网络上研究了意见动态的比斯瓦斯 - 查特吉 - 森(BChS)模型。为了在热力学极限下获得系统的相关量,使用了不同晶格尺寸的有限尺寸标度关系。从模拟数据可以清楚地看出,BChS模型经历了二阶相变。在转变点,已经评估了描述序参量行为、相应的序参量磁化率和关联长度的临界指数。从这些临界指数获得的值可以自信地得出结论,三维的BChS模型与在一维和二维所罗门网络上定义的相应模型属于不同的普适类,并且与相同网络上的通常伊辛模型也属于不同的普适类。