Suppr超能文献

ESE-YOLOv8:一种用于高处作业时安全带检测的新型目标检测算法。

ESE-YOLOv8: A Novel Object Detection Algorithm for Safety Belt Detection during Working at Heights.

作者信息

Zhou Qirui, Liu Dandan, An Kang

机构信息

The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201412, China.

College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China.

出版信息

Entropy (Basel). 2024 Jul 11;26(7):591. doi: 10.3390/e26070591.

Abstract

To address the challenges associated with supervising workers who wear safety belts while working at heights, this study proposes a solution involving the utilization of an object detection model to replace manual supervision. A novel object detection model, named ESE-YOLOv8, is introduced. The integration of the Efficient Multi-Scale Attention (EMA) mechanism within this model enhances information entropy through cross-channel interaction and encodes spatial information into the channels, thereby enabling the model to obtain rich and significant information during feature extraction. By employing GSConv to reconstruct the neck into a slim-neck configuration, the computational load of the neck is reduced without the loss of information entropy, allowing the attention mechanism to function more effectively, thereby improving accuracy. During the model training phase, a regression loss function named the Efficient Intersection over Union (EIoU) is employed to further refine the model's object localization capabilities. Experimental results demonstrate that the ESE-YOLOv8 model achieves an average precision of 92.7% at an IoU threshold of 50% and an average precision of 75.7% within the IoU threshold range of 50% to 95%. These results surpass the performance of the baseline model, the widely utilized YOLOv5 and demonstrate competitiveness among state-of-the-art models. Ablation experiments further confirm the effectiveness of the model's enhancements.

摘要

为应对在高处作业时监督佩戴安全带的工人所面临的挑战,本研究提出了一种解决方案,即利用目标检测模型来取代人工监督。引入了一种名为ESE-YOLOv8的新型目标检测模型。该模型中高效多尺度注意力(EMA)机制的集成通过跨通道交互增强了信息熵,并将空间信息编码到通道中,从而使模型在特征提取过程中能够获得丰富而重要的信息。通过采用GSConv将颈部重构为细颈配置,在不损失信息熵的情况下降低了颈部的计算量,使注意力机制能够更有效地发挥作用,从而提高了准确率。在模型训练阶段,采用了一种名为高效交并比(EIoU)的回归损失函数来进一步优化模型的目标定位能力。实验结果表明,ESE-YOLOv8模型在交并比阈值为50%时平均精度达到92.7%,在交并比阈值范围为50%至95%内平均精度为75.7%。这些结果超过了基线模型、广泛使用的YOLOv5的性能,并在当前最先进的模型中表现出竞争力。消融实验进一步证实了模型增强部分的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a403/11275857/63bffbeab839/entropy-26-00591-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验