Suppr超能文献

用受凯利启发的对流扩散方程分析序列投注

Analyzing Sequential Betting with a Kelly-Inspired Convective-Diffusion Equation.

作者信息

Velegol Darrell, Bishop Kyle J M

机构信息

Department of Chemical Engineering, Penn State University, University Park, PA 16802, USA.

The Knowlecular Processes Company, State College, PA 16803, USA.

出版信息

Entropy (Basel). 2024 Jul 15;26(7):600. doi: 10.3390/e26070600.

Abstract

The purpose of this article is to analyze a sequence of independent bets by modeling it with a convective-diffusion equation (CDE). The approach follows the derivation of the Kelly Criterion (i.e., with a binomial distribution for the numbers of wins and losses in a sequence of bets) and reframes it as a CDE in the limit of many bets. The use of the CDE clarifies the role of steady growth (characterized by a velocity ) and random fluctuations (characterized by a diffusion coefficient ) to predict a probability distribution for the remaining bankroll as a function of time. Whereas the Kelly Criterion selects the investment fraction that maximizes the median bankroll (0.50 quantile), we show that the CDE formulation can readily find an optimum betting fraction for any quantile. We also consider the effects of "ruin" using an absorbing boundary condition, which describes the termination of the betting sequence when the bankroll becomes too small. We show that the probability of ruin can be expressed by a dimensionless Péclet number characterizing the relative rates of convection and diffusion. Finally, the fractional Kelly heuristic is analyzed to show how it impacts returns and ruin. The reframing of the Kelly approach with the CDE opens new possibilities to use known results from the chemico-physical literature to address sequential betting problems.

摘要

本文的目的是通过用对流扩散方程(CDE)对其进行建模来分析一系列独立赌注。该方法遵循凯利准则的推导过程(即,对于一系列赌注中的输赢次数采用二项分布),并在大量赌注的极限情况下将其重新构建为一个CDE。CDE的使用阐明了稳定增长(以速度表征)和随机波动(以扩散系数表征)在预测作为时间函数的剩余资金的概率分布方面的作用。虽然凯利准则选择使资金中位数(0.50分位数)最大化的投资比例,但我们表明CDE公式可以很容易地找到任何分位数的最优投注比例。我们还使用吸收边界条件考虑了“破产”的影响,该条件描述了资金变得过小时投注序列的终止。我们表明,破产概率可以用一个表征对流和扩散相对速率的无量纲佩克莱数来表示。最后,分析了分数凯利启发式方法,以展示它如何影响回报和破产。用CDE对凯利方法进行重新构建为利用化学物理文献中的已知结果来解决顺序投注问题开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fefd/11276101/05cb23c7335b/entropy-26-00600-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验