Suppr超能文献

双能CT成像的现状与未来:我们能期待什么(以及不能期待什么)?

What to Expect (and What Not) from Dual-Energy CT Imaging Now and in the Future?

作者信息

García-Figueiras Roberto, Oleaga Laura, Broncano Jordi, Tardáguila Gonzalo, Fernández-Pérez Gabriel, Vañó Eliseo, Santos-Armentia Eloísa, Méndez Ramiro, Luna Antonio, Baleato-González Sandra

机构信息

Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain.

Department of Radiology, Hospital Clinic, C. de Villarroel, 170, 08036 Barcelona, Spain.

出版信息

J Imaging. 2024 Jun 26;10(7):154. doi: 10.3390/jimaging10070154.

Abstract

Dual-energy CT (DECT) imaging has broadened the potential of CT imaging by offering multiple postprocessing datasets with a single acquisition at more than one energy level. DECT shows profound capabilities to improve diagnosis based on its superior material differentiation and its quantitative value. However, the potential of dual-energy imaging remains relatively untapped, possibly due to its intricate workflow and the intrinsic technical limitations of DECT. Knowing the clinical advantages of dual-energy imaging and recognizing its limitations and pitfalls is necessary for an appropriate clinical use. The aims of this paper are to review the physical and technical bases of DECT acquisition and analysis, to discuss the advantages and limitations of DECT in different clinical scenarios, to review the technical constraints in material labeling and quantification, and to evaluate the cutting-edge applications of DECT imaging, including artificial intelligence, qualitative and quantitative imaging biomarkers, and DECT-derived radiomics and radiogenomics.

摘要

双能CT(DECT)成像通过在多个能量水平上单次采集提供多个后处理数据集,拓宽了CT成像的潜力。基于其卓越的物质区分能力和定量价值,DECT在改善诊断方面展现出强大的能力。然而,双能成像的潜力仍相对未被充分挖掘,这可能是由于其复杂的工作流程以及DECT固有的技术局限性。了解双能成像的临床优势并认识到其局限性和陷阱对于合理的临床应用是必要的。本文的目的是回顾DECT采集和分析的物理和技术基础,讨论DECT在不同临床场景中的优势和局限性,回顾物质标记和定量方面的技术限制,并评估DECT成像的前沿应用,包括人工智能、定性和定量成像生物标志物以及DECT衍生的放射组学和放射基因组学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2732/11278514/abb657ff2bff/jimaging-10-00154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验