Trigka Maria, Dritsas Elias
Industrial Systems Institute, Athena Research and Innovation Center, 26504 Patras, Greece.
Sensors (Basel). 2025 Jan 2;25(1):214. doi: 10.3390/s25010214.
Object detection is a pivotal research domain within computer vision, with applications spanning from autonomous vehicles to medical diagnostics. This comprehensive survey presents an in-depth analysis of the evolution and significant advancements in object detection, emphasizing the critical role of machine learning (ML) and deep learning (DL) techniques. We explore a wide spectrum of methodologies, ranging from traditional approaches to the latest DL models, thoroughly evaluating their performance, strengths, and limitations. Additionally, the survey delves into various metrics for assessing model effectiveness, including precision, recall, and intersection over union (IoU), while addressing ongoing challenges in the field, such as managing occlusions, varying object scales, and improving real-time processing capabilities. Furthermore, we critically examine recent breakthroughs, including advanced architectures like Transformers, and discuss challenges and future research directions aimed at overcoming existing barriers. By synthesizing current advancements, this survey provides valuable insights for enhancing the robustness, accuracy, and efficiency of object detection systems across diverse and challenging applications.
目标检测是计算机视觉领域的一个关键研究领域,其应用范围涵盖自动驾驶车辆到医学诊断等多个领域。本全面综述深入分析了目标检测的发展历程和重大进展,强调了机器学习(ML)和深度学习(DL)技术的关键作用。我们探讨了广泛的方法,从传统方法到最新的深度学习模型,全面评估它们的性能、优势和局限性。此外,该综述深入研究了用于评估模型有效性的各种指标,包括精度、召回率和交并比(IoU),同时探讨了该领域当前面临的挑战,如处理遮挡、应对不同的目标尺度以及提高实时处理能力。此外,我们批判性地审视了近期的突破,包括像Transformer这样的先进架构,并讨论了旨在克服现有障碍的挑战和未来研究方向。通过综合当前的进展,本综述为增强目标检测系统在各种具有挑战性的应用中的鲁棒性、准确性和效率提供了有价值的见解。