Suppr超能文献

钯/钯氧化物功能化镍铁氧体纳米颗粒的非水合成用于增强正丁醇检测

Nonaqueous Synthesis of Pd/PdO-Functionalized NiFeO Nanoparticles Enabled Enhancing n-Butanol Detection.

作者信息

Wu Hongyang, Chen Chen

机构信息

College of Instrumentation & Electrical Engineering, Key Laboratory of Geophysical Exploration Equipment, Ministry of Education of China, Jilin University, Changchun 130012, China.

出版信息

Nanomaterials (Basel). 2024 Jul 12;14(14):1188. doi: 10.3390/nano14141188.

Abstract

The efficient detection of n-butanol, which is in demand for highly sensitive materials, is essential for multiple applications. A nonaqueous method was applied to prepare NiFeO nanoparticles (NPs) using benzyl alcohol as a solvent, which shows a size of 7.9 ± 1.6 nm and a large surface area of 82.23 m/g. To further improve the sensing performance for n-butanol, Pd/PdO functionalization was sensitized with NiFeO NPs. Gas sensing results demonstrate that the Pd/PdO-NiFeO exhibits an enhanced response of 36.9 to 300 ppm n-butanol and a fast response and recovery time (18.2/17.6 s) at 260 °C. Furthermore, the Pd/PdO-NiFeO-based sensor possesses a good linear relationship between responses and the n-butanol concentration from 1 to 1000 ppm, and great selectivity against other volatile organic compounds (VOCs). The excellent sensing enhancement is attributed to the catalytic effects of Pd/PdO, the increase of oxygen vacancies, and the formation of heterojunction between PdO and NiFeO. Thus, this study offers an effective route for the synthesis of Pd/PdO-functionalized NiFeO NPs to achieve n-butanol detection with excellent sensing performance.

摘要

高效检测对高灵敏度材料有需求的正丁醇,对于多种应用至关重要。采用非水法以苯甲醇为溶剂制备了NiFeO纳米颗粒(NPs),其尺寸为7.9±1.6 nm,比表面积为82.23 m/g。为进一步提高对正丁醇的传感性能,用Pd/PdO对NiFeO NPs进行功能化敏化。气敏结果表明,Pd/PdO-NiFeO对300 ppm正丁醇的响应增强至36.9,在260℃时响应和恢复时间快(18.2/17.6 s)。此外,基于Pd/PdO-NiFeO的传感器在1至1000 ppm正丁醇浓度范围内,响应与浓度之间具有良好的线性关系,且对其他挥发性有机化合物(VOCs)具有优异的选择性。优异的传感增强归因于Pd/PdO的催化作用、氧空位的增加以及PdO与NiFeO之间异质结的形成。因此,本研究为合成具有优异传感性能的Pd/PdO功能化NiFeO NPs以实现正丁醇检测提供了一条有效途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c82/11279599/ffc7b0f05dc0/nanomaterials-14-01188-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验