Sihtmäe Mariliis, Laanoja Jüri, Blinova Irina, Kahru Anne, Kasemets Kaja
Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
Nanomaterials (Basel). 2024 Jul 12;14(14):1193. doi: 10.3390/nano14141193.
All novel materials should be analyzed for their potential environmental hazard. In this study, the toxicity of different silver-chitosan nanocomposites-potential candidates for wound dressings or antimicrobial surface coatings-was evaluated using environmentally relevant aquatic microcrustaceans and and naturally luminescent bacteria . Three silver-chitosan nanocomposites (nAgCSs) with different weight ratios of Ag to CS were studied. Citrate-coated silver nanoparticles (nAg-Cit), AgNO (ionic control) and low molecular weight chitosan (LMW CS) were evaluated in parallel. The primary size of nAgCSs was ~50 nm. The average hydrodynamic sizes in deionized water were ≤100 nm, and the zeta potential values were positive (16-26 mV). The nAgCSs proved very toxic to aquatic crustaceans: the 48-h EC value for was 0.065-0.232 mg/L, and the 24-h LC value for was 0.25-1.04 mg/L. The toxic effect correlated with the shedding of Ag ions (about 1%) from nAgCSs. Upon exposure of to nAgCSs for 30 min, bacterial luminescence was inhibited by 50% at 13-33 mg/L. However, the inhibitory effect (minimum bactericidal concentration, MBC) on bacterial growth upon 1 h exposure was observed at higher concentrations of nAgCSs, 40-65 mg/L. LMW CS inhibited bacterial luminescence upon 30-min exposure at 5.6 mg/L, but bacterial growth was inhibited at a much higher concentration (1 h MBC > 100 mg/L). The multi-trophic test battery, where was the most sensitive test organism, ranked the silver-chitosan nanocomposites from 'extremely toxic' [L(E)C ≤ 0.1 mg/L] to 'very toxic' [L(E)C > 0.1-1 mg/L]. Chitosan was toxic (EC(L)) to crustaceans at ~12 mg/L, and ranked accordingly as 'harmful' [L(E)C > 10-100 mg/L]. Thus, silver-chitosan nanocomposites may pose a hazard to aquatic organisms and must be handled accordingly.
所有新型材料都应分析其潜在的环境危害。在本研究中,使用与环境相关的水生微型甲壳动物和天然发光细菌评估了不同银 - 壳聚糖纳米复合材料(潜在的伤口敷料或抗菌表面涂层候选材料)的毒性。研究了三种具有不同银与壳聚糖重量比的银 - 壳聚糖纳米复合材料(nAgCSs)。同时评估了柠檬酸盐包覆的银纳米颗粒(nAg - Cit)、硝酸银(离子对照)和低分子量壳聚糖(LMW CS)。nAgCSs的初级粒径约为50nm。在去离子水中的平均流体动力学尺寸≤100nm,且zeta电位值为正(16 - 26mV)。nAgCSs对水生甲壳动物毒性很大:其48小时的半数有效浓度(EC)值为0.065 - 0.232mg/L,24小时的致死浓度(LC)值为0.25 - 1.04mg/L。毒性效应与nAgCSs中银离子的释放(约1%)相关。将天然发光细菌暴露于nAgCSs 30分钟后,在13 - 33mg/L时细菌发光被抑制50%。然而,在更高浓度的nAgCSs(40 - 65mg/L)下,暴露1小时后观察到对细菌生长的抑制作用(最低杀菌浓度,MBC)。低分子量壳聚糖在5.6mg/L暴露30分钟后抑制细菌发光,但在更高浓度(1小时MBC > 100mg/L)下抑制细菌生长。以天然发光细菌为最敏感测试生物的多营养测试组合将银 - 壳聚糖纳米复合材料从“剧毒”[致死浓度(L(E)C)≤0.1mg/L]到“高毒”[致死浓度(L(E)C)> 0.1 - 1mg/L]进行了排序。壳聚糖在约12mg/L时对甲壳动物有毒(EC(L)),并相应地被列为“有害”[致死浓度(L(E)C)> 10 - 100mg/L]。因此,银 - 壳聚糖纳米复合材料可能对水生生物构成危害,必须相应地进行处理。