Ahmadian Narjes, Konig Maaike M, Otto Sigrid, Tesselaar Kiki, van Eijsden Pieter, Gosselink Mark, Gursan Ayhan, Klomp Dennis W, Prompers Jeanine J, Wiegers Evita C
Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.
CTI Lab Support, University Medical Center Utrecht, Utrecht, The Netherlands.
J Magn Reson Imaging. 2025 Mar;61(3):1170-1178. doi: 10.1002/jmri.29532. Epub 2024 Jul 26.
Deuterium metabolic imaging (DMI) is an innovative, noninvasive metabolic MR imaging method conducted after administration of H-labeled substrates. DMI after [6,6'-H]glucose consumption has been used to investigate brain metabolic processes, but the impact of different [6,6'-H]glucose doses on DMI brain data is not well known.
To investigate three different [6,6'-H]glucose doses for DMI in the human brain at 7 T.
Prospective.
Six healthy participants (age: 28 ± 8 years, male/female: 3/3).
FIELD STRENGTH/SEQUENCE: 7 T, 3D H free-induction-decay (FID)-magnetic resonance spectroscopic imaging (MRSI) sequence.
Three subjects received two different doses (0.25 g/kg, 0.50 g/kg or 0.75 g/kg body weight) of [6,6'-H]glucose on two occasions and underwent consecutive H-MRSI scans for 120 minutes. Blood was sampled every 10 minutes during the scan, to determine plasma glucose levels and plasma H-Glucose atom percent excess (APE) (part-1). Three subjects underwent the same protocol once after receiving 0.50 g/kg [6,6'-H]glucose (part-2).
Mean plasma H-Glucose APE and glucose plasma concentrations were compared using one-way ANOVA. Brain H-Glc and brain H-Glx (part-1) were analyzed with a two-level Linear Mixed Model. In part-2, a General Linear Model was used to compare brain metabolite signals. Statistical significance was set at P < 0.05.
Between 60 and 100 minutes after ingesting [6,6'-H]glucose, plasma H-Glc APE did not differ between 0.50 g/kg and 0.75 g/kg doses (P = 0.961), but was significantly lower for 0.25 g/kg. Time and doses significantly affected brain H-Glucose levels (estimate ± standard error [SE]: 0.89 ± 0.01, 1.09 ± 0.01, and 1.27 ± 0.01, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively) and brain H-Glutamate/Glutamine levels (estimate ± SE: 1.91 ± 0.03, 2.27 ± 0.03, and 2.46 ± 0.03, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively). Plasma H-Glc APE, brain H-Glc, and brain H-Glx levels were comparable among subjects receiving 0.50 g/kg [6,6'-H]glucose.
Brain H-Glucose and brain H-Glutamate/Glutamine showed to be [6,6'-H]glucose dose dependent. A dose of 0.50 g/kg demonstrated comparable, and well-detectable, H-Glucose and H-Glutamate/Glutamine signals in the brain.
1 TECHNICAL EFFICACY: Stage 2.
氘代谢成像(DMI)是一种创新的、无创的代谢磁共振成像方法,在给予H标记底物后进行。[6,6'-H]葡萄糖消耗后的DMI已用于研究脑代谢过程,但不同剂量的[6,6'-H]葡萄糖对DMI脑数据的影响尚不清楚。
研究在7T磁场下用于人脑DMI的三种不同剂量的[6,6'-H]葡萄糖。
前瞻性研究。
6名健康参与者(年龄:28±8岁,男/女:3/3)。
场强/序列:7T,3D氢自由感应衰减(FID)-磁共振波谱成像(MRSI)序列。
三名受试者分两次接受两种不同剂量(0.25g/kg、0.50g/kg或0.75g/kg体重)的[6,6'-H]葡萄糖,并进行连续120分钟的氢MRSI扫描。扫描期间每10分钟采集一次血样,以测定血浆葡萄糖水平和血浆H-葡萄糖原子百分超量(APE)(第一部分)。三名受试者在接受0.50g/kg[6,6'-H]葡萄糖后,按相同方案进行一次实验(第二部分)。
采用单因素方差分析比较血浆H-葡萄糖APE均值和葡萄糖血浆浓度。采用二级线性混合模型分析脑内H-葡萄糖和H-谷氨酸/谷氨酰胺(第一部分)。在第二部分中,采用一般线性模型比较脑代谢物信号。设定统计学显著性水平为P<0.05。
摄入[6,6'-H]葡萄糖后60至100分钟,0.50g/kg和0.75g/kg剂量组的血浆H-葡萄糖APE无差异(P=0.961),但0.25g/kg剂量组显著较低。时间和剂量显著影响脑内H-葡萄糖水平(估计值±标准误[SE]:0.25g/kg、0.50g/kg和0.75g/kg分别为0.89±0.01、1.09±0.01和1.27±0.01)和脑内H-谷氨酸/谷氨酰胺水平(估计值±SE:0.25g/kg、0.50g/kg和0.75g/kg分别为1.91±0.03、2.27±0.03和2.46±0.03)。接受0.50g/kg[6,6'-H]葡萄糖的受试者之间,血浆H-葡萄糖APE、脑内H-葡萄糖和脑内H-谷氨酸/谷氨酰胺水平相当。
脑内H-葡萄糖和脑内H-谷氨酸/谷氨酰胺显示出[6,6'-H]葡萄糖剂量依赖性。0.50g/kg的剂量在脑内显示出相当且可良好检测的H-葡萄糖和H-谷氨酸/谷氨酰胺信号。
1 技术效能:2级