Suppr超能文献

氘代谢成像——回到未来。

Deuterium metabolic imaging - Back to the future.

机构信息

Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA.

出版信息

J Magn Reson. 2021 May;326:106932. doi: 10.1016/j.jmr.2021.106932.

Abstract

Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.

摘要

氘代谢波谱(DMS)和成像(DMI)最近被描述为一种简单而强大的基于磁共振的方法,可以高时间和/或空间分辨率来绘制代谢图谱。通过氘磁共振方法可以监测各种合适的氘代底物的代谢命运,包括葡萄糖和乙酸盐,氘的磁共振特性有利于防止许多妨碍其他技术的并发症。短 T 弛豫时间导致良好的磁共振灵敏度,而低自然丰度则无需水或脂质抑制。氘谱的稀疏性与低共振频率相结合,提供了对磁场不均匀性的相对免疫力。这些特征结合在一起,形成了一种高度稳健的代谢成像方法,具有成为主要磁共振研究工具和可行的临床成像方式的强大潜力。本观点回顾了氘作为代谢示踪剂的历史,以及 NMR 作为体外和体内检测氘的方法的应用,以及 DMS 和 DMI 的最新发展。在回顾了氘的 NMR 特性和生物学效应之后,概述了 DMI 的广阔前景。

相似文献

1
Deuterium metabolic imaging - Back to the future.
J Magn Reson. 2021 May;326:106932. doi: 10.1016/j.jmr.2021.106932.
3
Deuterium metabolic imaging of the human brain in vivo at 7 T.
Magn Reson Med. 2023 Jan;89(1):29-39. doi: 10.1002/mrm.29439. Epub 2022 Sep 5.
4
Advances and prospects in deuterium metabolic imaging (DMI): a systematic review of in vivo studies.
Eur Radiol Exp. 2024 Jun 3;8(1):65. doi: 10.1186/s41747-024-00464-y.
5
On the magnetic field dependence of deuterium metabolic imaging.
NMR Biomed. 2020 Mar;33(3):e4235. doi: 10.1002/nbm.4235. Epub 2019 Dec 26.
7
Characterization of Kinetic Isotope Effects and Label Loss in Deuterium-Based Isotopic Labeling Studies.
ACS Chem Neurosci. 2021 Jan 6;12(1):234-243. doi: 10.1021/acschemneuro.0c00711. Epub 2020 Dec 15.
8
Deuterium MRSI characterizations of glucose metabolism in orthotopic pancreatic cancer mouse models.
NMR Biomed. 2021 Sep;34(9):e4569. doi: 10.1002/nbm.4569. Epub 2021 Jun 16.
9
Deuterium Metabolic Imaging of the Healthy and Diseased Brain.
Neuroscience. 2021 Oct 15;474:94-99. doi: 10.1016/j.neuroscience.2021.01.023. Epub 2021 Jan 22.
10
Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo.
Sci Adv. 2018 Aug 22;4(8):eaat7314. doi: 10.1126/sciadv.aat7314. eCollection 2018 Aug.

引用本文的文献

1
Probing Intracellular Yeast Metabolism With Deuterium Magnetic Resonance Spectroscopy.
NMR Biomed. 2025 Oct;38(10):e70121. doi: 10.1002/nbm.70121.
2
Comparison of Low-Rank Denoising Methods for Dynamic Deuterium MRSI at 7 T.
NMR Biomed. 2025 Oct;38(10):e70125. doi: 10.1002/nbm.70125.
3
Advances in magnetic resonance spectroscopy for metabolic disorders.
Front Endocrinol (Lausanne). 2025 Jul 18;16:1578333. doi: 10.3389/fendo.2025.1578333. eCollection 2025.
4
Imaging cancer metabolism using magnetic resonance.
Npj Imaging. 2024 Jan 11;2(1):1. doi: 10.1038/s44303-023-00004-0.
5
Potential of Metabolic MRI to Address Unmet Clinical Needs in Localised Kidney Cancer.
Cancers (Basel). 2025 May 26;17(11):1773. doi: 10.3390/cancers17111773.
6
Base-Promoted Iridium-Catalyzed Deuteration and C-H Bond Activation of -Heterocycles.
J Org Chem. 2025 Jun 20;90(24):8080-8089. doi: 10.1021/acs.joc.5c00174. Epub 2025 Jun 5.
7
10
3D deuterium metabolic imaging (DMI) of the human liver at 7 T using low-rank and subspace model-based reconstruction.
Magn Reson Med. 2025 May;93(5):1860-1873. doi: 10.1002/mrm.30395. Epub 2024 Dec 22.

本文引用的文献

1
Deuterium Metabolic Imaging of the Healthy and Diseased Brain.
Neuroscience. 2021 Oct 15;474:94-99. doi: 10.1016/j.neuroscience.2021.01.023. Epub 2021 Jan 22.
2
Characterization of Kinetic Isotope Effects and Label Loss in Deuterium-Based Isotopic Labeling Studies.
ACS Chem Neurosci. 2021 Jan 6;12(1):234-243. doi: 10.1021/acschemneuro.0c00711. Epub 2020 Dec 15.
4
HDO production from [H]glucose Quantitatively Identifies Warburg Metabolism.
Sci Rep. 2020 Jun 1;10(1):8885. doi: 10.1038/s41598-020-65839-8.
5
Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4309. doi: 10.1002/nbm.4309. Epub 2020 Apr 29.
6
Stable isotopes: their use and safety in human nutrition studies.
Eur J Clin Nutr. 2020 Mar;74(3):362-365. doi: 10.1038/s41430-020-0580-0. Epub 2020 Feb 11.
7
H magnetic resonance spectroscopy of H-to-H exchange quantifies the dynamics of cellular metabolism in vivo.
Nat Biomed Eng. 2020 Mar;4(3):335-342. doi: 10.1038/s41551-019-0499-8. Epub 2020 Jan 27.
8
Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats.
Int J Obes (Lond). 2020 Jun;44(6):1417-1427. doi: 10.1038/s41366-020-0533-7. Epub 2020 Jan 21.
9
On the magnetic field dependence of deuterium metabolic imaging.
NMR Biomed. 2020 Mar;33(3):e4235. doi: 10.1002/nbm.4235. Epub 2019 Dec 26.
10
Measuring Tumor Glycolytic Flux in Vivo by Using Fast Deuterium MRI.
Radiology. 2020 Feb;294(2):289-296. doi: 10.1148/radiol.2019191242. Epub 2019 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验