Logitech, Lausanne, Switzerland.
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
J Neural Eng. 2024 Sep 3;21(5). doi: 10.1088/1741-2552/ad680b.
. We show that electroencephalography (EEG)-based cognitive load (CL) prediction using Riemannian geometry features outperforms existing models. The performance is estimated using Riemannian Procrustes Analysis (RPA) with a test set of subjects unseen during training.. Performance is evaluated by using the Minimum Distance to Riemannian Mean model trained on CL classification. The baseline performance is established using spatial covariance matrices of the signal as features. Various novel features are explored and analyzed in depth, including spatial covariance and correlation matrices computed on the EEG signal and its first-order derivative. Furthermore, each RPA step effect on the performance is investigated, and the generalization performance of RPA is compared against a few different generalization methods.. Performances are greatly improved by using the spatial covariance matrix of the first-order derivative of the signal as features. Furthermore, this work highlights both the importance and efficiency of RPA for CL prediction: it achieves good generalizability with little amounts of calibration data and largely outperforms all the comparison methods.. CL prediction using RPA for generalizability across subjects is an approach worth exploring further, especially for real-world applications where calibration time is limited. Furthermore, the feature exploration uncovers new, promising features that can be used and further experimented within any Riemannian geometry setting.
我们展示了基于脑电图(EEG)的认知负荷(CL)预测使用黎曼几何特征优于现有模型。性能使用基于黎曼 Procrustes 分析(RPA)的测试集来评估,该测试集的受试者在训练期间未被看到。使用基于 CL 分类的最小距离到黎曼均值模型来评估性能。使用信号的空间协方差矩阵作为特征来建立基线性能。深入探索和分析了各种新颖的特征,包括对 EEG 信号及其一阶导数计算的空间协方差和相关矩阵。此外,还研究了每个 RPA 步骤对性能的影响,并将 RPA 的泛化性能与几种不同的泛化方法进行了比较。通过使用信号一阶导数的空间协方差矩阵作为特征,可以大大提高性能。此外,这项工作强调了 RPA 对于 CL 预测的重要性和效率:它使用少量的校准数据实现了良好的可泛化性,并大大优于所有比较方法。对于跨受试者的可泛化性,使用 RPA 进行 CL 预测是一种值得进一步探索的方法,特别是对于校准时间有限的实际应用。此外,特征探索揭示了新的、有前途的特征,可以在任何黎曼几何环境中使用和进一步实验。