Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland.
Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland.
Microb Cell Fact. 2024 Jul 27;23(1):215. doi: 10.1186/s12934-024-02486-y.
Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles.
The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell's biomass.
Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.
绿脓菌素是铜绿假单胞菌产生的一种蓝色色素。由于其独特的氧化还原特性,在过去十年中,它作为一种有用的化学物质引起了越来越多的关注。然而,它仍然是一种相当昂贵的试剂。以前的研究表明,通过采用各种方法可以增强绿脓菌素的产生。其中包括使用统计方法来规划实验,或使细菌培养物暴露于应激源下,例如亚致死浓度的纳米粒子,如氧化锌纳米粒子。
实验设计(DoE)方法可计算出最佳的工艺温度和纳米粒子浓度,以增强绿脓菌素的生产。纳米粒子的低浓度(6.06µg/mL)和 32℃的温度增强了绿脓菌素的生产,而纳米粒子的高浓度(275.75µg/mL)和较高的温度刺激了生物量的生产,并导致绿脓菌素的生产停止。在添加氧化锌纳米粒子的培养基中,色素产量的升高在扩大培养中得以维持。进行的分析证实,观察到的绿脓菌素生产的刺激作用伴随着更高的膜电位、基因表达的改变、活性氧的产生以及锌在细胞生物量中的积累。
可以使用 ZnO 纳米粒子来控制绿脓菌素的生产。由于暴露于纳米粒子而导致的绿脓菌素产量的增加伴随着细菌生理学的大量变化,这是细胞应激的结果。我们表明,使用统计方法可以优化细菌的应激反应,从而更有效地生产所需的代谢物。