Suppr超能文献

基于F-氟脱氧葡萄糖正电子发射断层扫描的风险评分模型预测非小细胞肺癌根治性切除术后的五年生存结果

F-Fluorodeoxyglucose Positron Emission Tomography-Based Risk Score Model for Prediction of Five-Year Survival Outcome after Curative Resection of Non-Small-Cell Lung Cancer.

作者信息

Lim Chae Hong, Um Sang-Won, Kim Hong Kwan, Choi Yong Soo, Pyo Hong Ryul, Ahn Myung-Ju, Choi Joon Young

机构信息

Department of Nuclear Medicine, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.

出版信息

Cancers (Basel). 2024 Jul 12;16(14):2525. doi: 10.3390/cancers16142525.

Abstract

The aim of our retrospective study is to develop and assess an imaging-based model utilizing F-FDG PET parameters for predicting the five-year survival in non-small-cell lung cancer (NSCLC) patients after curative surgery. A total of 361 NSCLC patients who underwent curative surgery were assigned to the training set ( = 253) and the test set ( = 108). The LASSO regression model was used to construct a PET-based risk score for predicting five-year survival. A hybrid model that combined the PET-based risk score and clinical variables was developed using multivariate logistic regression analysis. The predictive performance was determined by the area under the curve (AUC). The individual features with the best predictive performances were co-occurrence_contrast (AUC = 0.675) and SUL peak (AUC = 0.671). The PET-based risk score was identified as an independent predictor after adjusting for clinical variables (OR 5.231, 95% CI 1.987-6.932; = 0.009). The hybrid model, which integrated clinical variables, significantly outperformed the PET-based risk score alone in predictive accuracy (AUC = 0.771 vs. 0.696, = 0.022), a finding that was consistent in the test set. The PET-based risk score, especially when integrated with clinical variables, demonstrates good predictive ability for five-year survival in NSCLC patients following curative surgery.

摘要

我们这项回顾性研究的目的是开发并评估一种基于影像的模型,该模型利用F-FDG PET参数来预测非小细胞肺癌(NSCLC)患者根治性手术后的五年生存率。共有361例行根治性手术的NSCLC患者被分配到训练集(n = 253)和测试集(n = 108)。采用LASSO回归模型构建基于PET的风险评分以预测五年生存率。使用多因素逻辑回归分析开发了一种将基于PET的风险评分与临床变量相结合的混合模型。通过曲线下面积(AUC)来确定预测性能。预测性能最佳的个体特征是共生对比度(AUC = 0.675)和标准化摄取值峰值(AUC = 0.671)。在对临床变量进行校正后,基于PET的风险评分被确定为独立预测因子(OR 5.231,95%CI 1.987 - 6.932;P = 0.009)。整合了临床变量的混合模型在预测准确性方面显著优于单独的基于PET的风险评分(AUC = 0.771对0.696,P = 0.022),这一结果在测试集中也得到了验证。基于PET的风险评分,尤其是与临床变量相结合时,对NSCLC患者根治性手术后的五年生存率具有良好的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e9e/11274931/e4a0b421dba6/cancers-16-02525-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验