Suppr超能文献

对抗新出现的对卡泊芬净耐药的菌种:通过壳聚糖减轻1介导的耐药性并增强卡泊芬净的疗效。

Fighting Emerging Caspofungin-Resistant Species: Mitigating 1-Mediated Resistance and Enhancing Caspofungin Efficacy by Chitosan.

作者信息

Tarek Aya, Tartor Yasmine H, Hassan Mohamed N, Pet Ioan, Ahmadi Mirela, Abdelkhalek Adel

机构信息

Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.

Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.

出版信息

Antibiotics (Basel). 2024 Jun 22;13(7):578. doi: 10.3390/antibiotics13070578.

Abstract

Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal potential of chitosan to mitigate caspofungin resistance in caspofungin-resistant , , and isolates originating from human and animal sources using agar well diffusion, broth microdilution tests, and transmission electron microscope (TEM) analysis of treated cells. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed to assess the expression of SAGA complex genes ( and and the caspofungin resistance gene () in species isolates after chitosan treatment. The highest resistance rate was observed to ketoconazole (80%) followed by clotrimazole (62.7%), fluconazole (60%), terbinafine (58%), itraconazole (57%), miconazole (54.2%), amphotericin B (51.4%), voriconazole (34.28%), and caspofungin (25.7%). Nine unique mutations were detected, including S645P ( = 3 isolates), S645F, L644F, S645Y, L688M, E663G, and F641S (one isolate in each). The caspofungin minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values before chitosan treatment ranged from 2 to 8 µg/mL and 4 to 16 µg/mL, respectively. However, the MIC and MFC values were decreased after chitosan treatment (0.0625-1 µg/mL) and (0.125-2 µg/mL), respectively. Caspofungin MIC was significantly decreased ( = 0.0007) threefold following chitosan treatment compared with the MIC values before treatment. TEM analysis revealed that 0.5% chitosan disrupted the integrity of the cell surface, causing irregular morphologies and obvious aberrant changes in cell wall thickness in caspofungin-resistant and sensitive isolates. The cell wall thickness of untreated isolates was 0.145 μm in caspofungin-resistant isolate and 0.125 μm in sensitive isolate, while it was significantly lower in chitosan-treated isolates, ranging from 0.05 to 0.08 μm when compared with the cell wall thickness of sensitive isolate (0.03 to 0.06 μm). Moreover, RT-qPCR demonstrated a significant ( < 0.05) decrease in the expression levels of histone acetyltransferase genes ( and ) and gene of caspofungin-resistant species isolates treated with 0.5% chitosan when compared with before treatment (fold change values ranged from 0.001 to 0.0473 for , 1.028 to 4.856 for , and 2.713 to 12.38 for gene). A comparison of the expression levels of cell wall-related genes ( and ) between caspofungin-resistant and -sensitive isolates demonstrated a significant decrease following chitosan treatment ( < 0.001). The antifungal potential of chitosan enhances the efficacy of caspofungin against various caspofungin-resistant species isolates and prevents the development of further antifungal resistance. The results of this study contribute to the progress in repurposing caspofungin and inform a development strategy to enhance its efficacy, appropriate antifungal activity against species, and mitigate resistance. Consequently, chitosan could be used in combination with caspofungin for the treatment of candidiasis.

摘要

侵袭性念珠菌病因抗真菌耐药性的日益普遍而在全球构成威胁,导致更高的发病率和死亡率。此外,作为机会性感染的念珠菌对免疫功能低下的个体具有重大的医学和经济影响。本研究利用琼脂孔扩散法、肉汤微量稀释试验以及对经处理的念珠菌细胞进行透射电子显微镜(TEM)分析,探究壳聚糖对源自人和动物源的对卡泊芬净耐药的白色念珠菌、光滑念珠菌和热带念珠菌分离株减轻卡泊芬净耐药性的抗真菌潜力。进行逆转录定量聚合酶链反应(RT-qPCR)以评估壳聚糖处理后念珠菌属分离株中SAGA复合体基因(SGF29和ADA2)以及卡泊芬净耐药基因(CDR1)的表达。观察到对酮康唑的耐药率最高(80%),其次是克霉唑(62.7%)、氟康唑(60%)、特比萘芬(58%)、伊曲康唑(57%)、咪康唑(54.2%)、两性霉素B(51.4%)、伏立康唑(34.28%)和卡泊芬净(25.7%)。检测到9种独特的CDR1突变,包括S645P(n = 3株分离株)、S645F、L644F、S645Y、L688M、E663G和F641S(各1株分离株)。壳聚糖处理前卡泊芬净的最低抑菌浓度(MIC)和最低杀菌浓度(MFC)值分别为2至8 μg/mL和4至16 μg/mL。然而,壳聚糖处理后MIC和MFC值分别降低(0.0625 - 1 μg/mL)和(0.125 - 2 μg/mL)。与处理前的MIC值相比,壳聚糖处理后卡泊芬净的MIC显著降低(P = 0.0007)三倍。TEM分析显示,0.5%壳聚糖破坏了细胞表面的完整性,导致对卡泊芬净耐药和敏感的念珠菌分离株出现形态不规则以及细胞壁厚度明显异常变化。未处理分离株的细胞壁厚度在对卡泊芬净耐药的分离株中为0.145 μm,在敏感分离株中为0.125 μm,而壳聚糖处理后的分离株细胞壁厚度显著更低,与敏感分离株的细胞壁厚度(0.03至0.06 μm)相比,范围为0.05至0.08 μm。此外,RT-qPCR表明,与处理前相比,用0.5%壳聚糖处理的对卡泊芬净耐药的念珠菌属分离株中组蛋白乙酰转移酶基因(SGF29和ADA2)以及CDR1基因的表达水平显著降低(P < 0.05)(SGF29的倍数变化值范围为0.001至0.0473,ADA2为1.028至4.856,CDR1基因为2.713至12.38)。对卡泊芬净耐药和敏感分离株之间细胞壁相关基因(CHS1和MP65)表达水平的比较表明,壳聚糖处理后显著降低(P < 0.001)。壳聚糖的抗真菌潜力增强了卡泊芬净对各种对卡泊芬净耐药的念珠菌属分离株的疗效,并防止进一步产生抗真菌耐药性。本研究结果有助于卡泊芬净重新利用方面的进展,并为提高其疗效、对念珠菌属的适当抗真菌活性以及减轻耐药性的开发策略提供信息。因此,壳聚糖可与卡泊芬净联合用于治疗念珠菌病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d28f/11274059/259b3d45d36f/antibiotics-13-00578-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验