Suppr超能文献

COVID-19再入院的预测建模:机器学习和深度学习方法的见解

Predictive Modeling of COVID-19 Readmissions: Insights from Machine Learning and Deep Learning Approaches.

作者信息

Loo Wei Kit, Voon Wingates, Suhaimi Anwar, Teh Cindy Shuan Ju, Tee Yee Kai, Hum Yan Chai, Hasikin Khairunnisa, Teo Kareen, Ong Hang Cheng, Lai Khin Wee

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia.

出版信息

Diagnostics (Basel). 2024 Jul 12;14(14):1511. doi: 10.3390/diagnostics14141511.

Abstract

This project employs artificial intelligence, including machine learning and deep learning, to assess COVID-19 readmission risk in Malaysia. It offers tools to mitigate healthcare resource strain and enhance patient outcomes. This study outlines a methodology for classifying COVID-19 readmissions. It starts with dataset description and pre-processing, while the data balancing was computed through Random Oversampling, Borderline SMOTE, and Adaptive Synthetic Sampling. Nine machine learning and ten deep learning techniques are applied, with five-fold cross-validation for evaluation. Optuna is used for hyperparameter selection, while the consistency in training hyperparameters is maintained. Evaluation metrics encompass accuracy, AUC, and training/inference times. Results were based on stratified five-fold cross-validation and different data-balancing methods. Notably, CatBoost consistently excelled in accuracy and AUC across all tables. Using ROS, CatBoost achieved the highest accuracy (0.9882 ± 0.0020) with an AUC of 1.0000 ± 0.0000. CatBoost maintained its superiority in BSMOTE and ADASYN as well. Deep learning approaches performed well, with SAINT leading in ROS and TabNet leading in BSMOTE and ADASYN. Decision Tree ensembles like Random Forest and XGBoost consistently showed strong performance.

摘要

该项目采用人工智能,包括机器学习和深度学习,来评估马来西亚新冠肺炎再入院风险。它提供了减轻医疗资源压力和改善患者治疗效果的工具。本研究概述了一种新冠肺炎再入院分类方法。它从数据集描述和预处理开始,同时通过随机过采样、边界合成少数类过采样技术(Borderline SMOTE)和自适应合成采样来计算数据平衡。应用了九种机器学习技术和十种深度学习技术,并采用五折交叉验证进行评估。使用Optuna进行超参数选择,同时保持训练超参数的一致性。评估指标包括准确率、曲线下面积(AUC)以及训练/推理时间。结果基于分层五折交叉验证和不同的数据平衡方法。值得注意的是,在所有表格中,CatBoost在准确率和AUC方面始终表现出色。使用随机过采样(ROS)时,CatBoost的准确率最高(0.9882±0.0020),AUC为1.0000±0.0000。在边界合成少数类过采样技术(BSMOTE)和自适应合成采样(ADASYN)中,CatBoost也保持着优势。深度学习方法表现良好,在随机过采样中SAINT领先,在边界合成少数类过采样技术和自适应合成采样中TabNet领先。像随机森林和XGBoost这样的决策树集成方法始终表现出强大的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/993a/11275856/4f4daed06352/diagnostics-14-01511-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验