Suppr超能文献

治疗前肌肉减少症与基于MRI的放射组学预测三阴性乳腺癌新辅助化疗反应

Pretreatment Sarcopenia and MRI-Based Radiomics to Predict the Response of Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer.

作者信息

Guo Jiamin, Meng Wenjun, Li Qian, Zheng Yichen, Yin Hongkun, Liu Ying, Zhao Shuang, Ma Ji

机构信息

Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.

Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.

出版信息

Bioengineering (Basel). 2024 Jun 28;11(7):663. doi: 10.3390/bioengineering11070663.

Abstract

The association between sarcopenia and the effectiveness of neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) remains uncertain. This study aims to examine the potential of sarcopenia as a predictive factor for the response to NAC in TNBC, and to assess whether its combination with MRI radiomic signatures can improve the predictive accuracy. We collected clinical and pathological information, as well as pretreatment breast MRI and abdominal CT images, of 121 patients with TNBC who underwent NAC at our hospital between January 2012 and September 2021. The presence of pretreatment sarcopenia was assessed using the L3 skeletal muscle index. Clinical models were constructed based on independent risk factors identified by univariate regression analysis. Radiomics data were extracted on breast MRI images and the radiomics prediction models were constructed. We integrated independent risk factors and radiomic features to build the combined models. The results of this study demonstrated that sarcopenia is an independent predictive factor for NAC efficacy in TNBC. The combination of sarcopenia and MRI radiomic signatures can further improve predictive performance.

摘要

肌肉减少症与三阴性乳腺癌(TNBC)新辅助化疗(NAC)疗效之间的关联仍不明确。本研究旨在探讨肌肉减少症作为TNBC中NAC反应预测因素的可能性,并评估其与MRI影像组学特征相结合是否能提高预测准确性。我们收集了2012年1月至2021年9月期间在我院接受NAC的121例TNBC患者的临床和病理信息,以及治疗前的乳腺MRI和腹部CT图像。使用L3骨骼肌指数评估治疗前肌肉减少症的存在情况。基于单因素回归分析确定的独立危险因素构建临床模型。从乳腺MRI图像中提取影像组学数据并构建影像组学预测模型。我们整合独立危险因素和影像组学特征以建立联合模型。本研究结果表明,肌肉减少症是TNBC中NAC疗效的独立预测因素。肌肉减少症与MRI影像组学特征相结合可进一步提高预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b55b/11274092/8ee1d6a1e0b2/bioengineering-11-00663-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验