Panahipour Layla, Micucci Chiara, Gelmetti Benedetta, Gruber Reinhard
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland.
Bioengineering (Basel). 2024 Jul 5;11(7):687. doi: 10.3390/bioengineering11070687.
Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin (AREG), a growth factor that mediates the cross-talk between immune cells and epithelial cells; chromosome 11 open reading frame 96 (C11orf96) with an unclear biologic function; and the inflammation-associated prostaglandin E synthase (PTGES). Gingival fibroblasts increasingly express these genes in response to bone allografts containing remnants of injured cells. Thus, the gene expression might be caused by the local release of damage-associated molecular patterns arising from injured cells. The aim of this study is consequently to use the established gene panel as a bioassay to measure the damage-associated activity of oral cell lysates. To this aim, we have exposed gingival fibroblasts to lysates prepared from the squamous carcinoma cell lines TR146 and HSC2, oral epithelial cells, and gingival fibroblasts. We report here that all lysates significantly increased the transcription of the entire gene panel, supported for STC1 at the protein level. Blocking TGF-β receptor 1 kinase with SB431542 only partially reduced the forced expression of STC1, AREG, and C11orf96. SB431542 even increased the PTGES expression. Together, these findings suggest that the damage signals originating from oral cells can change the paracrine activity of gingival fibroblasts. Moreover, the expression panel of genes can serve as a bioassay for testing the biocompatibility of materials for oral application.
牙龈成纤维细胞是维持牙周稳态以及介导与牙周炎和口腔鳞状细胞癌相关病理事件所需的旁分泌信号的重要来源。潜在的旁分泌信号包括参与氧化应激和细胞存活的1型骨钙素(STC1)、介导免疫细胞与上皮细胞间相互作用的生长因子双调蛋白(AREG)、生物学功能尚不清楚的11号染色体开放阅读框96(C11orf96)以及与炎症相关的前列腺素E合酶(PTGES)。牙龈成纤维细胞对含有受损细胞残余物的骨同种异体移植物反应时会增加这些基因的表达。因此,基因表达可能是由受损细胞释放的损伤相关分子模式所引起的。本研究的目的因此是使用已建立的基因组作为生物测定法来测量口腔细胞裂解物的损伤相关活性。为此,我们将牙龈成纤维细胞暴露于由鳞状癌细胞系TR146和HSC2、口腔上皮细胞以及牙龈成纤维细胞制备的裂解物中。我们在此报告,所有裂解物均显著增加了整个基因组的转录,在蛋白质水平上对STC1有支持作用。用SB431542阻断转化生长因子-β受体1激酶仅部分降低了STC1、AREG和C11orf96的强制表达。SB431542甚至增加了PTGES的表达。总之,这些发现表明源自口腔细胞的损伤信号可改变牙龈成纤维细胞的旁分泌活性。此外,基因表达组可作为一种生物测定法来测试口腔应用材料的生物相容性。