文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 scRNA-seq 和 bulk RNA-seq 数据的牙周炎免疫原性细胞死亡分析。

Analysis of immunogenic cell death in periodontitis based on scRNA-seq and bulk RNA-seq data.

机构信息

Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.

Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, China.

出版信息

Front Immunol. 2024 Nov 1;15:1438998. doi: 10.3389/fimmu.2024.1438998. eCollection 2024.


DOI:10.3389/fimmu.2024.1438998
PMID:39555084
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11568468/
Abstract

BACKGROUND: Recent studies have suggested that cell death may be involved in bone loss or the resolution of inflammation in periodontitis. Immunogenic cell death (ICD), a recently identified cell death pathway, may be involved in the development of this disease. METHODS: By analyzing single-cell RNA sequencing (scRNA-seq) for periodontitis and scoring gene set activity, we identified cell populations associated with ICD, which were further verified by qPCR, enzyme linked immunosorbent assay (ELISA) and immunofluorescence (IF) staining. By combining the bulk transcriptome and applying machine learning methods, we identified several potential ICD-related hub genes, which were then used to build diagnostic models. Subsequently, consensus clustering analysis was performed to identify ICD-associated subtypes, and multiple bioinformatics algorithms were used to investigate differences in immune cells and pathways between subtypes. Finally, qPCR and immunohistochemical staining were performed to validate the accuracy of the models. RESULTS: Single-cell gene set activity analysis found that in non-immune cells, fibroblasts had a higher ICD activity score, and KEGG results showed that fibroblasts were enriched in a variety of ICD-related pathways. qPCR, Elisa and IF further verified the accuracy of the results. From the bulk transcriptome, we identified 11 differentially expressed genes (DEGs) associated with ICD, and machine learning methods further identified 5 hub genes associated with ICD. Consensus cluster analysis based on these 5 genes showed that there were differences in immune cells and immune functions among subtypes associated with ICD. Finally, qPCR and immunohistochemistry confirmed the ability of these five genes as biomarkers for the diagnosis of periodontitis. CONCLUSION: Fibroblasts may be the main cell source of ICD in periodontitis. Adaptive immune responses driven by ICD may be one of the pathogenesis of periodontitis. Five key genes associated with ICD (ENTPD1, TLR4, LY96, PRF1 and P2RX7) may be diagnostic biomarkers of periodontitis and future therapeutic targets.

摘要

背景:最近的研究表明,细胞死亡可能参与牙周炎中的骨质流失或炎症消退。免疫原性细胞死亡(ICD)是一种新发现的细胞死亡途径,可能与该疾病的发展有关。

方法:通过分析牙周炎的单细胞 RNA 测序(scRNA-seq)和评分基因集活性,我们确定了与 ICD 相关的细胞群体,并用 qPCR、酶联免疫吸附测定(ELISA)和免疫荧光(IF)染色进一步验证。通过结合批量转录组并应用机器学习方法,我们确定了几个潜在的 ICD 相关枢纽基因,然后用于构建诊断模型。随后,进行共识聚类分析以确定与 ICD 相关的亚型,并使用多种生物信息学算法来研究亚型之间免疫细胞和通路的差异。最后,进行 qPCR 和免疫组织化学染色以验证模型的准确性。

结果:单细胞基因集活性分析发现,在非免疫细胞中,成纤维细胞的 ICD 活性评分较高,KEGG 结果显示成纤维细胞富集在多种 ICD 相关途径中。qPCR、ELISA 和 IF 进一步验证了结果的准确性。从批量转录组中,我们确定了 11 个与 ICD 相关的差异表达基因(DEGs),机器学习方法进一步确定了 5 个与 ICD 相关的枢纽基因。基于这 5 个基因的共识聚类分析表明,与 ICD 相关的亚型之间存在免疫细胞和免疫功能的差异。最后,qPCR 和免疫组化证实了这 5 个基因作为牙周炎诊断生物标志物的能力。

结论:成纤维细胞可能是牙周炎中 ICD 的主要细胞来源。由 ICD 驱动的适应性免疫反应可能是牙周炎的发病机制之一。与 ICD 相关的 5 个关键基因(ENTPD1、TLR4、LY96、PRF1 和 P2RX7)可能是牙周炎的诊断生物标志物和未来的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/8b89bfab45c5/fimmu-15-1438998-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/831ec25eb9fd/fimmu-15-1438998-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/497f08bc9c79/fimmu-15-1438998-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/11fff1b7708d/fimmu-15-1438998-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/d9b34e38f2b6/fimmu-15-1438998-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/bae497c9f09c/fimmu-15-1438998-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/03e481be4b0f/fimmu-15-1438998-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/5c9b39e5d84a/fimmu-15-1438998-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/8b89bfab45c5/fimmu-15-1438998-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/831ec25eb9fd/fimmu-15-1438998-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/497f08bc9c79/fimmu-15-1438998-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/11fff1b7708d/fimmu-15-1438998-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/d9b34e38f2b6/fimmu-15-1438998-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/bae497c9f09c/fimmu-15-1438998-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/03e481be4b0f/fimmu-15-1438998-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/5c9b39e5d84a/fimmu-15-1438998-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01e/11568468/8b89bfab45c5/fimmu-15-1438998-g008.jpg

相似文献

[1]
Analysis of immunogenic cell death in periodontitis based on scRNA-seq and bulk RNA-seq data.

Front Immunol. 2024

[2]
Multi-omics features of immunogenic cell death in gastric cancer identified by combining single-cell sequencing analysis and machine learning.

Sci Rep. 2024-9-18

[3]
Identification of novel immune-related signatures for keloid diagnosis and treatment: insights from integrated bulk RNA-seq and scRNA-seq analysis.

Hum Genomics. 2024-7-16

[4]
Analysis of immunogenic cell death in atherosclerosis based on scRNA-seq and bulk RNA-seq data.

Int Immunopharmacol. 2023-6

[5]
Classification and clinical significance of immunogenic cell death-related genes in Plasmodium falciparum infection determined by integrated bioinformatics analysis and machine learning.

Malar J. 2024-2-15

[6]
Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis.

Front Immunol. 2024

[7]
An immunogenic cell death-related regulators classification patterns and immune microenvironment infiltration characterization in intracranial aneurysm based on machine learning.

Front Immunol. 2022

[8]
Identification of the immune-associated characteristics and predictive biomarkers of keratoconus based on single-cell RNA-sequencing and bulk RNA-sequencing.

Front Immunol. 2023

[9]
Analysis and validation of potential ICD-related biomarkers in development of myopia using machine learning.

Int Ophthalmol. 2024-2-27

[10]
Integrated single-cell and bulk RNA sequencing identifies POSTN as a potential biomarker and therapeutic target for rheumatoid arthritis.

Gene. 2024-11-30

引用本文的文献

[1]
Integrating GEO Database, Mendelian Randomization, and Molecular Docking to Identify HLA-C as a Potential Therapeutic Target for Periodontitis.

Mediators Inflamm. 2025-7-14

本文引用的文献

[1]
In Vitro Bioassay for Damage-Associated Molecular Patterns Arising from Injured Oral Cells.

Bioengineering (Basel). 2024-7-5

[2]
Identification of immunogenic cell death-related genes involved in Alzheimer's disease.

Sci Rep. 2024-2-15

[3]
Accuracy of periodontitis diagnosis obtained using multiple molecular biomarkers in oral fluids: A systematic review and meta-analysis.

J Clin Periodontol. 2023-11

[4]
Uncovering the potential role of oxidative stress in the development of periodontitis and establishing a stable diagnostic model via combining single-cell and machine learning analysis.

Front Immunol. 2023

[5]
Inhibition of gingival fibroblast necroptosis mediated by RIPK3/MLKL attenuates periodontitis.

J Clin Periodontol. 2023-9

[6]
Immunogenic cell death-led discovery of COVID-19 biomarkers and inflammatory infiltrates.

Front Microbiol. 2023-5-9

[7]
The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis.

J Dent Res. 2023-5

[8]
Identification of Key Biomarkers Associated with Immunogenic Cell Death and Their Regulatory Mechanisms in Severe Acute Pancreatitis Based on WGCNA and Machine Learning.

Int J Mol Sci. 2023-2-3

[9]
Fibroblast ferroptosis is involved in periodontitis-induced tissue damage and bone loss.

Int Immunopharmacol. 2023-1

[10]
Fusobacterium nucleatum triggers proinflammatory cell death via Z-DNA binding protein 1 in apical periodontitis.

Cell Commun Signal. 2022-12-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索