Iqbal Neelam, Ganguly Payal, Yildizbakan Lemiha, Raif El Mostafa, Jones Elena, Giannoudis Peter V, Jha Animesh
School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK.
Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK.
Bioengineering (Basel). 2024 Jul 16;11(7):720. doi: 10.3390/bioengineering11070720.
Chitosan (CS), a biopolymer, holds significant potential in bone regeneration due to its biocompatibility and biodegradability attributes. While crustacean-derived CS is conventionally used in research, there is growing interest in fungal-derived CS for its equally potent properties in bone regenerative applications. Here, we investigated the physicochemical and biological characteristics of fungal (MDC) and crustacean (ADC)-derived CS scaffolds embedded with different concentrations of tricalcium phosphate minerals (TCP), i.e., 0(wt)%: ADC/MDC-1, 10(wt)%: ADC/MDC-2, 20(wt)%: ADC/MDC-3 and 30(wt)%: ADC/MDC-4. ADC-1 and MDC-1 lyophilised scaffolds lacking TCP minerals presented the highest zeta potentials of 47.3 ± 1.2 mV and 55.1 ± 1.6 mV, respectively. Scanning electron microscopy revealed prominent distinctions whereby MDC scaffolds exhibited striation-like structural microarchitecture in contrast to the porous morphology exhibited by ADC scaffold types. With regard to the 4-week scaffold mass reductions, MDC-1, MDC-2, MDC-3, and MDC-4 indicated declines of 55.98 ± 4.2%, 40.16 ± 3.6%, 27.05 ± 4.7%, and 19.16 ± 5.3%, respectively. Conversely, ADC-1, ADC-2, ADC-3, and ADC-4 presented mass reductions of 35.78 ± 5.1%, 25.19 ± 4.2%, 20.23 ± 6.3%, and 13.68 ± 5.4%, respectively. The biological performance of the scaffolds was assessed through in vitro bone marrow mesenchymal stromal cell (BMMSCs) attachment via indirect and direct cytotoxicity studies, where all scaffold types presented no cytotoxic behaviours. MDC scaffolds indicated results comparable to ADC, where both CS types exhibited similar physiochemical properties. Our data suggest that MDC scaffolds could be a potent alternative to ADC-derived scaffolds for bone regeneration applications, particularly for 10(wt)% TCP concentrations.
壳聚糖(CS)是一种生物聚合物,因其生物相容性和可生物降解性,在骨再生方面具有巨大潜力。虽然传统上研究中使用的是源自甲壳类动物的CS,但人们对源自真菌的CS越来越感兴趣,因为它在骨再生应用中具有同样强大的性能。在此,我们研究了嵌入不同浓度磷酸三钙矿物质(TCP)的真菌(MDC)和甲壳类动物(ADC)衍生的CS支架的物理化学和生物学特性,即0(重量)%:ADC/MDC - 1、10(重量)%:ADC/MDC - 2、20(重量)%:ADC/MDC - 3和30(重量)%:ADC/MDC - 4。缺乏TCP矿物质的ADC - 1和MDC - 1冻干支架分别呈现出最高的zeta电位,为47.3±1.2 mV和55.1±1.6 mV。扫描电子显微镜显示出显著差异,与ADC支架类型呈现的多孔形态相比,MDC支架呈现出条纹状结构微架构。关于4周时支架的质量减少情况,MDC - 1、MDC - 2、MDC - 3和MDC - 4分别下降了55.98±4.2%、40.16±3.6%、27.05±4.7%和19.16±5.3%。相反,ADC - 1、ADC - 2、ADC - 3和ADC - 4的质量减少分别为35.78±5.1%、25.19±4.2%、20.23±6.3%和13.68±5.4%。通过间接和直接细胞毒性研究,通过体外骨髓间充质基质细胞(BMMSCs)附着来评估支架 的生物学性能,所有支架类型均未表现出细胞毒性行为。MDC支架显示出与ADC相当的结果,两种CS类型均表现出相似的物理化学性质。我们的数据表明,对于骨再生应用,MDC支架可能是ADC衍生支架的有效替代品,特别是对于浓度为10(重量)%的TCP。