Suppr超能文献

耳鸣治疗中基于图形的脑电图分析

Graph-Based Electroencephalography Analysis in Tinnitus Therapy.

作者信息

Awais Muhammad, Kassoul Khelil, Omri Abdelfatteh El, Aboumarzouk Omar M, Abdulhadi Khalid, Brahim Belhaouari Samir

机构信息

Department of Creative Technologies, Air University, Islamabad 44000, Pakistan.

Geneva School of Business Administration, University of Applied Sciences Western Switzerland, HES-SO, 1227 Geneva, Switzerland.

出版信息

Biomedicines. 2024 Jun 25;12(7):1404. doi: 10.3390/biomedicines12071404.

Abstract

Tinnitus is the perception of sounds like ringing or buzzing in the ears without any external source, varying in intensity and potentially becoming chronic. This study aims to enhance the understanding and treatment of tinnitus by analyzing a dataset related to tinnitus therapy, focusing on electroencephalography (EEG) signals from patients undergoing treatment. The objectives of the study include applying various preprocessing techniques to ensure data quality, such as noise elimination and standardization of sampling rates, and extracting essential features from EEG signals, including power spectral density and statistical measures. The novelty of this research lies in its innovative approach to representing different channels of EEG signals as new graph network representations without losing any information. This transformation allows for the use of Graph Neural Networks (GNNs), specifically Graph Convolutional Networks (GCNs) combined with Long Short-Term Memory (LSTM) networks, to model intricate relationships and temporal dependencies within the EEG data. This method enables a comprehensive analysis of the complex interactions between EEG channels. The study reports an impressive accuracy rate of 99.41%, demonstrating the potential of this novel approach. By integrating graph representation and deep learning, this research introduces a new methodology for analyzing tinnitus therapy data, aiming to contribute to more effective treatment strategies for tinnitus sufferers.

摘要

耳鸣是指在没有任何外部声源的情况下,耳朵里出现如铃声或嗡嗡声等声音的感觉,其强度各异,且可能会发展成慢性。本研究旨在通过分析与耳鸣治疗相关的数据集来增进对耳鸣的理解和治疗方法,重点关注接受治疗患者的脑电图(EEG)信号。该研究的目标包括应用各种预处理技术以确保数据质量,如消除噪声和标准化采样率,以及从EEG信号中提取基本特征,包括功率谱密度和统计量度。这项研究的新颖之处在于其创新方法,即将EEG信号的不同通道表示为新的图网络表示形式,且不丢失任何信息。这种转换允许使用图神经网络(GNN),特别是结合长短期记忆(LSTM)网络的图卷积网络(GCN),来对EEG数据中的复杂关系和时间依赖性进行建模。这种方法能够对EEG通道之间的复杂相互作用进行全面分析。该研究报告的准确率高达99.41%,证明了这种新方法的潜力。通过整合图表示和深度学习,本研究引入了一种分析耳鸣治疗数据的新方法,旨在为耳鸣患者制定更有效的治疗策略做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057f/11274277/e1ac923922e8/biomedicines-12-01404-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验