Suppr超能文献

饱和突变和分子建模:蛋氨酸 182 取代对β-内酰胺酶 TEM-1 稳定性的影响。

Saturation Mutagenesis and Molecular Modeling: The Impact of Methionine 182 Substitutions on the Stability of β-Lactamase TEM-1.

机构信息

Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.

Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.

出版信息

Int J Mol Sci. 2024 Jul 13;25(14):7691. doi: 10.3390/ijms25147691.

Abstract

Serine β-lactamase TEM-1 is the first β-lactamase discovered and is still common in Gram-negative pathogens resistant to β-lactam antibiotics. It hydrolyzes penicillins and cephalosporins of early generations. Some of the emerging TEM-1 variants with one or several amino acid substitutions have even broader substrate specificity and resistance to known covalent inhibitors. Key amino acid substitutions affect catalytic properties of the enzyme, and secondary mutations accompany them. The occurrence of the secondary mutation M182T, called a "global suppressor", has almost doubled over the last decade. Therefore, we performed saturating mutagenesis at position 182 of TEM-1 to determine the influence of this single amino acid substitution on the catalytic properties, thermal stability, and ability for thermoreactivation. Steady-state parameters for penicillin, cephalothin, and ceftazidime are similar for all TEM-1 M182X variants, whereas melting temperature and ability to reactivate after incubation at a higher temperature vary significantly. The effects are multidirectional and depend on the particular amino acid at position 182. The M182E variant of β-lactamase TEM-1 demonstrates the highest residual enzymatic activity, which is 1.5 times higher than for the wild-type enzyme. The 3D structure of the side chain of residue 182 is of particular importance as observed from the comparison of the M182I and M182L variants of TEM-1. Both of these amino acid residues have hydrophobic side chains of similar size, but their residual activity differs by three-fold. Molecular dynamic simulations add a mechanistic explanation for this phenomenon. The important structural element is the V159-R65-E177 triad that exists due to both electrostatic and hydrophobic interactions. Amino acid substitutions that disturb this triad lead to a decrease in the ability of the β-lactamase to be reactivated.

摘要

丝氨酸 β-内酰胺酶 TEM-1 是第一种被发现的 β-内酰胺酶,仍然在革兰氏阴性病原体中普遍存在,这些病原体对β-内酰胺抗生素具有耐药性。它可水解第一代青霉素和头孢菌素。一些具有一个或多个氨基酸取代的新兴 TEM-1 变体具有更广泛的底物特异性和对已知共价抑制剂的耐药性。关键氨基酸取代影响酶的催化特性,并且伴随着它们发生二次突变。称为“全局抑制剂”的次要突变 M182T 的发生在过去十年中几乎翻了一番。因此,我们在 TEM-1 的位置 182 处进行饱和诱变,以确定该单个氨基酸取代对催化特性、热稳定性和热重激活能力的影响。青霉素、头孢噻吩和头孢他啶的所有 TEM-1 M182X 变体的稳态参数均相似,而熔点和在较高温度下孵育后的重激活能力则有很大差异。这些影响是多方向的,并且取决于位置 182 的特定氨基酸。β-内酰胺酶 TEM-1 的 M182E 变体表现出最高的残留酶活性,比野生型酶高 1.5 倍。从 TEM-1 的 M182I 和 M182L 变体的比较可以看出,残基 182 的侧链 3D 结构特别重要。这两个氨基酸残基都具有相似大小的疏水性侧链,但它们的残留活性相差三倍。分子动力学模拟为此现象提供了一种机制解释。重要的结构元素是由于静电和疏水相互作用而存在的 V159-R65-E177 三联体。干扰该三联体的氨基酸取代会导致β-内酰胺酶的重激活能力下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5521/11276661/f225325f646a/ijms-25-07691-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验