Suppr超能文献

TEM-1 β-内酰胺酶Ω环中的三重突变通过大的构象变化和改变催化的通用碱来改变底物谱。

A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis.

作者信息

Stojanoski Vlatko, Chow Dar-Chone, Hu Liya, Sankaran Banumathi, Gilbert Hiram F, Prasad B V Venkataram, Palzkill Timothy

机构信息

From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and the Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030 and.

the Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030 and.

出版信息

J Biol Chem. 2015 Apr 17;290(16):10382-94. doi: 10.1074/jbc.M114.633438. Epub 2015 Feb 20.

Abstract

β-Lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. TEM-1 is a prevalent plasmid-encoded β-lactamase in Gram-negative bacteria that efficiently catalyzes the hydrolysis of penicillins and early cephalosporins but not oxyimino-cephalosporins. A previous random mutagenesis study identified a W165Y/E166Y/P167G triple mutant that displays greatly altered substrate specificity with increased activity for the oxyimino-cephalosporin, ceftazidime, and decreased activity toward all other β-lactams tested. Surprisingly, this mutant lacks the conserved Glu-166 residue critical for enzyme function. Ceftazidime contains a large, bulky side chain that does not fit optimally in the wild-type TEM-1 active site. Therefore, it was hypothesized that the substitutions in the mutant expand the binding site in the enzyme. To investigate structural changes and address whether there is an enlargement in the active site, the crystal structure of the triple mutant was solved to 1.44 Å. The structure reveals a large conformational change of the active site Ω-loop structure to create additional space for the ceftazidime side chain. The position of the hydroxyl group of Tyr-166 and an observed shift in the pH profile of the triple mutant suggests that Tyr-166 participates in the hydrolytic mechanism of the enzyme. These findings indicate that the highly conserved Glu-166 residue can be substituted in the mechanism of serine β-lactamases. The results reveal that the robustness of the overall β-lactamase fold coupled with the plasticity of an active site loop facilitates the evolution of enzyme specificity and mechanism.

摘要

β-内酰胺酶是能够水解β-内酰胺抗生素的细菌酶。TEM-1是革兰氏阴性菌中一种常见的质粒编码β-内酰胺酶,它能高效催化青霉素和早期头孢菌素的水解,但不能催化氧亚氨基头孢菌素的水解。先前的一项随机诱变研究鉴定出一个W165Y/E166Y/P167G三重突变体,该突变体显示出底物特异性发生了极大改变,对氧亚氨基头孢菌素头孢他啶的活性增加,而对所有其他测试的β-内酰胺的活性降低。令人惊讶的是,该突变体缺乏对酶功能至关重要的保守Glu-166残基。头孢他啶含有一个大的、庞大的侧链,在野生型TEM-1活性位点中不能最佳适配。因此,有人推测该突变体中的取代扩大了酶中的结合位点。为了研究结构变化并确定活性位点是否扩大,解析了三重突变体的晶体结构,分辨率达到1.44 Å。该结构揭示了活性位点Ω环结构的巨大构象变化,为头孢他啶侧链创造了额外空间。Tyr-166羟基的位置以及三重突变体pH谱的观察变化表明,Tyr-166参与了酶的水解机制。这些发现表明,在丝氨酸β-内酰胺酶的机制中,高度保守的Glu-166残基可以被取代。结果表明,β-内酰胺酶整体折叠的稳健性与活性位点环的可塑性相结合,促进了酶特异性和机制的进化。

相似文献

3
Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.
J Bacteriol. 1996 Apr;178(7):1821-8. doi: 10.1128/jb.178.7.1821-1828.1996.
4
Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.
J Biol Chem. 2009 Nov 27;284(48):33703-12. doi: 10.1074/jbc.M109.053819. Epub 2009 Oct 6.
6
Antagonism between substitutions in β-lactamase explains a path not taken in the evolution of bacterial drug resistance.
J Biol Chem. 2020 May 22;295(21):7376-7390. doi: 10.1074/jbc.RA119.012489. Epub 2020 Apr 16.
8
The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop.
Antimicrob Agents Chemother. 2018 Dec 21;63(1). doi: 10.1128/AAC.01754-18. Print 2019 Jan.
10
His224 alters the R2 drug binding site and Phe218 influences the catalytic efficiency of the metallo-β-lactamase VIM-7.
Antimicrob Agents Chemother. 2014 Aug;58(8):4826-36. doi: 10.1128/AAC.02735-13. Epub 2014 Jun 9.

引用本文的文献

1
Evolutionary Dynamics and Functional Differences in Clinically Relevant Pen β-Lactamases from spp.
J Chem Inf Model. 2025 May 26;65(10):5086-5098. doi: 10.1021/acs.jcim.5c00271. Epub 2025 May 2.
3
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2435365. doi: 10.1080/14756366.2024.2435365. Epub 2024 Dec 23.
10
A topological data analytic approach for discovering biophysical signatures in protein dynamics.
PLoS Comput Biol. 2022 May 2;18(5):e1010045. doi: 10.1371/journal.pcbi.1010045. eCollection 2022 May.

本文引用的文献

1
Evolution of drug resistance: insight on TEM β-lactamases structure and activity and β-lactam antibiotics.
Mini Rev Med Chem. 2014 Feb;14(2):111-22. doi: 10.2174/1389557514666140123145809.
2
Mutations inducing an active-site aperture in Rhizobium sp. sucrose isomerase confer hydrolytic activity.
Acta Crystallogr D Biol Crystallogr. 2013 Feb;69(Pt 2):298-307. doi: 10.1107/S0907444912045532. Epub 2013 Jan 19.
5
iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):271-81. doi: 10.1107/S0907444910048675. Epub 2011 Mar 18.
6
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
7
Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens.
Int J Med Microbiol. 2010 Aug;300(6):371-9. doi: 10.1016/j.ijmm.2010.04.005. Epub 2010 May 27.
8
Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance.
FEMS Microbiol Rev. 2010 Nov;34(6):1015-36. doi: 10.1111/j.1574-6976.2010.00222.x.
9
TEM-1 backbone dynamics-insights from combined molecular dynamics and nuclear magnetic resonance.
Biophys J. 2010 Feb 17;98(4):637-45. doi: 10.1016/j.bpj.2009.08.061.
10
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验