Suppr超能文献

基于交互式推理网络的药物-靶标相互作用预测。

Drug-Target Interaction Prediction Based on an Interactive Inference Network.

机构信息

College of Mathematics and Computer, Shantou University, Shantou 515063, China.

Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.

出版信息

Int J Mol Sci. 2024 Jul 15;25(14):7753. doi: 10.3390/ijms25147753.

Abstract

Drug-target interactions underlie the actions of chemical substances in medicine. Moreover, drug repurposing can expand use profiles while reducing costs and development time by exploiting potential multi-functional pharmacological properties based upon additional target interactions. Nonetheless, drug repurposing relies on the accurate identification and validation of drug-target interactions (DTIs). In this study, a novel drug-target interaction prediction model was developed. The model, based on an interactive inference network, contains embedding, encoding, interaction, feature extraction, and output layers. In addition, this study used Morgan and PubChem molecular fingerprints as additional information for drug encoding. The interaction layer in our model simulates the drug-target interaction process, which assists in understanding the interaction by representing the interaction space. Our method achieves high levels of predictive performance, as well as interpretability of drug-target interactions. Additionally, we predicted and validated 22 Alzheimer's disease-related targets, suggesting our model is robust and effective and thus may be beneficial for drug repurposing.

摘要

药物-靶点相互作用是药物中化学物质作用的基础。此外,通过利用基于额外靶点相互作用的潜在多功能药理学特性,药物重新定位可以扩展使用范围,同时降低成本和开发时间。然而,药物重新定位依赖于药物-靶点相互作用(DTIs)的准确识别和验证。在这项研究中,开发了一种新的药物-靶点相互作用预测模型。该模型基于交互推理网络,包含嵌入、编码、交互、特征提取和输出层。此外,本研究还使用了 Morgan 和 PubChem 分子指纹作为药物编码的附加信息。我们模型中的交互层模拟了药物-靶点相互作用的过程,通过表示相互作用空间来帮助理解相互作用。我们的方法实现了较高的预测性能和药物-靶点相互作用的可解释性。此外,我们预测和验证了 22 个阿尔茨海默病相关靶点,表明我们的模型稳健有效,因此可能有助于药物重新定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc4/11277210/e65031d38f27/ijms-25-07753-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验