Suppr超能文献

基于语义分割和旋转目标检测的自动柑橘采摘单目姿态估计方法

Monocular Pose Estimation Method for Automatic Citrus Harvesting Using Semantic Segmentation and Rotating Target Detection.

作者信息

Xiao Xu, Wang Yaonan, Jiang Yiming, Wu Haotian, Zhou Bing

机构信息

College of Electrical and Information Engineering, Hunan University, Changsha 410082, China.

National Engineering Research Center for Robot Vision Perception and Control Technology, Hunan University, Changsha 410082, China.

出版信息

Foods. 2024 Jul 13;13(14):2208. doi: 10.3390/foods13142208.

Abstract

The lack of spatial pose information and the low positioning accuracy of the picking target are the key factors affecting the picking function of citrus-picking robots. In this paper, a new method for automatic citrus fruit harvest is proposed, which uses semantic segmentation and rotating target detection to estimate the pose of a single culture. First, Faster R-CNN is used for grab detection to identify candidate grab frames. At the same time, the semantic segmentation network extracts the contour information of the citrus fruit to be harvested. Then, the capture frame with the highest confidence is selected for each target fruit using the semantic segmentation results, and the rough angle is estimated. The network uses image-processing technology and a camera-imaging model to further segment the mask image of the fruit and its epiphyllous branches and realize the fitting of contour, fruit centroid, and fruit minimum outer rectangular frame and three-dimensional boundary frame. The positional relationship of the citrus fruit to its epiphytic branches was used to estimate the three-dimensional pose of the citrus fruit. The effectiveness of the method was verified through citrus-planting experiments, and then field picking experiments were carried out in the natural environment of orchards. The results showed that the success rate of citrus fruit recognition and positioning was 93.6%, the average attitude estimation angle error was 7.9°, and the success rate of picking was 85.1%. The average picking time is 5.6 s, indicating that the robot can effectively perform intelligent picking operations.

摘要

采摘目标的空间位姿信息缺失和定位精度低是影响柑橘采摘机器人采摘功能的关键因素。本文提出了一种新的柑橘自动收获方法,该方法利用语义分割和旋转目标检测来估计单个果实的位姿。首先,使用Faster R-CNN进行抓取检测以识别候选抓取帧。同时,语义分割网络提取待采摘柑橘果实的轮廓信息。然后,利用语义分割结果为每个目标果实选择置信度最高的捕获帧,并估计粗略角度。该网络使用图像处理技术和相机成像模型进一步分割果实及其附生枝叶的掩膜图像,并实现轮廓、果实质心、果实最小外接矩形框和三维边界框的拟合。利用柑橘果实与其附生枝叶的位置关系来估计柑橘果实的三维位姿。通过柑橘种植实验验证了该方法的有效性,然后在果园自然环境中进行了田间采摘实验。结果表明,柑橘果实识别与定位成功率为93.6%,平均姿态估计角度误差为7.9°,采摘成功率为85.1%。平均采摘时间为5.6 s,表明该机器人能够有效地执行智能采摘作业。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e56/11276354/cc4fce1f11b8/foods-13-02208-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验