文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 YOLOv7 和 PSP-Ellipse 的火龙果采摘检测方法。

A Dragon Fruit Picking Detection Method Based on YOLOv7 and PSP-Ellipse.

机构信息

School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China.

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.

出版信息

Sensors (Basel). 2023 Apr 7;23(8):3803. doi: 10.3390/s23083803.


DOI:10.3390/s23083803
PMID:37112144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10141975/
Abstract

Dragon fruit is one of the most popular fruits in China and Southeast Asia. It, however, is mainly picked manually, imposing high labor intensity on farmers. The hard branches and complex postures of dragon fruit make it difficult to achieve automated picking. For picking dragon fruits with diverse postures, this paper proposes a new dragon fruit detection method, not only to identify and locate the dragon fruit, but also to detect the endpoints that are at the head and root of the dragon fruit, which can provide more visual information for the dragon fruit picking robot. First, YOLOv7 is used to locate and classify the dragon fruit. Then, we propose a PSP-Ellipse method to further detect the endpoints of the dragon fruit, including dragon fruit segmentation via PSPNet, endpoints positioning via an ellipse fitting algorithm and endpoints classification via ResNet. To test the proposed method, some experiments are conducted. In dragon fruit detection, the precision, recall and average precision of YOLOv7 are 0.844, 0.924 and 0.932, respectively. YOLOv7 also performs better compared with some other models. In dragon fruit segmentation, the segmentation performance of PSPNet on dragon fruit is better than some other commonly used semantic segmentation models, with the segmentation precision, recall and mean intersection over union being 0.959, 0.943 and 0.906, respectively. In endpoints detection, the distance error and angle error of endpoints positioning based on ellipse fitting are 39.8 pixels and 4.3°, and the classification accuracy of endpoints based on ResNet is 0.92. The proposed PSP-Ellipse method makes a great improvement compared with two kinds of keypoint regression method based on ResNet and UNet. Orchard picking experiments verified that the method proposed in this paper is effective. The detection method proposed in this paper not only promotes the progress of the automatic picking of dragon fruit, but it also provides a reference for other fruit detection.

摘要

火龙果是中国和东南亚最受欢迎的水果之一。然而,火龙果主要是人工采摘,这给农民带来了很高的劳动强度。火龙果坚硬的树枝和复杂的姿态使得自动化采摘变得困难。针对姿态各异的火龙果采摘问题,本文提出了一种新的火龙果检测方法,不仅可以识别和定位火龙果,还可以检测火龙果的头部和根部端点,为火龙果采摘机器人提供更多的视觉信息。首先,使用 YOLOv7 对火龙果进行定位和分类。然后,我们提出了一种 PSP-Ellipse 方法来进一步检测火龙果的端点,包括通过 PSPNet 对火龙果进行分割、通过椭圆拟合算法对端点进行定位以及通过 ResNet 对端点进行分类。为了测试所提出的方法,进行了一些实验。在火龙果检测方面,YOLOv7 的精度、召回率和平均精度分别为 0.844、0.924 和 0.932,并且比其他一些模型表现更好。在火龙果分割方面,PSPNet 在火龙果上的分割性能优于一些常用的语义分割模型,分割精度、召回率和平均交并比分别为 0.959、0.943 和 0.906。在端点检测方面,基于椭圆拟合的端点定位的距离误差和角度误差分别为 39.8 像素和 4.3°,基于 ResNet 的端点分类准确率为 0.92。与基于 ResNet 和 UNet 的两种关键点回归方法相比,所提出的 PSP-Ellipse 方法有了很大的改进。果园采摘实验验证了本文所提出方法的有效性。本文提出的检测方法不仅促进了火龙果自动采摘的进展,而且为其他水果的检测提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/24bfa14a1f90/sensors-23-03803-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/005878c9dd0c/sensors-23-03803-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/d3614cdddc3b/sensors-23-03803-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/d51c20925836/sensors-23-03803-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/03b711757fe0/sensors-23-03803-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/159abf08ade7/sensors-23-03803-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/556b5cfc711b/sensors-23-03803-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/3d5db22b422a/sensors-23-03803-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/4d45bc561822/sensors-23-03803-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/e5e81ecb6dbe/sensors-23-03803-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/24bfa14a1f90/sensors-23-03803-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/005878c9dd0c/sensors-23-03803-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/d3614cdddc3b/sensors-23-03803-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/d51c20925836/sensors-23-03803-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/03b711757fe0/sensors-23-03803-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/159abf08ade7/sensors-23-03803-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/556b5cfc711b/sensors-23-03803-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/3d5db22b422a/sensors-23-03803-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/4d45bc561822/sensors-23-03803-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/e5e81ecb6dbe/sensors-23-03803-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f1/10141975/24bfa14a1f90/sensors-23-03803-g010.jpg

相似文献

[1]
A Dragon Fruit Picking Detection Method Based on YOLOv7 and PSP-Ellipse.

Sensors (Basel). 2023-4-7

[2]
A tea bud segmentation, detection and picking point localization based on the MDY7-3PTB model.

Front Plant Sci. 2023-9-28

[3]
YOLOv7-Plum: Advancing Plum Fruit Detection in Natural Environments with Deep Learning.

Plants (Basel). 2023-8-7

[4]
Dragon fruit detection in natural orchard environment by integrating lightweight network and attention mechanism.

Front Plant Sci. 2022-10-20

[5]
Monocular Pose Estimation Method for Automatic Citrus Harvesting Using Semantic Segmentation and Rotating Target Detection.

Foods. 2024-7-13

[6]
YOLOv7-Peach: An Algorithm for Immature Small Yellow Peaches Detection in Complex Natural Environments.

Sensors (Basel). 2023-5-26

[7]
YOLO-P: An efficient method for pear fast detection in complex orchard picking environment.

Front Plant Sci. 2023-1-4

[8]
Fast Recognition and Counting Method of Dragon Fruit Flowers and Fruits Based on Video Stream.

Sensors (Basel). 2023-10-13

[9]
A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard.

Plants (Basel). 2022-11-27

[10]
TBC-YOLOv7: a refined YOLOv7-based algorithm for tea bud grading detection.

Front Plant Sci. 2023-8-17

引用本文的文献

[1]
An anchor-based YOLO fruit detector developed on YOLOv5.

PLoS One. 2025-9-5

[2]
Research progress and prospect of key technologies of fruit target recognition for robotic fruit picking.

Front Plant Sci. 2024-12-6

[3]
Streamlining YOLOv7 for Rapid and Accurate Detection of Rapeseed Varieties on Embedded Device.

Sensors (Basel). 2024-8-28

[4]
Deep Learning-Based Automated Approach for Determination of Pig Carcass Traits.

Animals (Basel). 2024-8-21

[5]
An improved deep learning network for image detection and its application in Dendrobii caulis decoction piece.

Sci Rep. 2024-6-12

本文引用的文献

[1]
YOLOv7-RAR for Urban Vehicle Detection.

Sensors (Basel). 2023-2-6

[2]
Dragon fruit detection in natural orchard environment by integrating lightweight network and attention mechanism.

Front Plant Sci. 2022-10-20

[3]
Vision-Based Detection of Bolt Loosening Using YOLOv5.

Sensors (Basel). 2022-7-11

[4]
Detection of Farmland Obstacles Based on an Improved YOLOv5s Algorithm by Using CIoU and Anchor Box Scale Clustering.

Sensors (Basel). 2022-2-24

[5]
A Real-Time Zanthoxylum Target Detection Method for an Intelligent Picking Robot under a Complex Background, Based on an Improved YOLOv5s Architecture.

Sensors (Basel). 2022-1-17

[6]
A Method of Green Citrus Detection in Natural Environments Using a Deep Convolutional Neural Network.

Front Plant Sci. 2021-9-7

[7]
Design of a Scalable and Fast YOLO for Edge-Computing Devices.

Sensors (Basel). 2020-11-27

[8]
Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review.

Front Plant Sci. 2020-5-19

[9]
Mango Fruit Load Estimation Using a Video Based MangoYOLO-Kalman Filter-Hungarian Algorithm Method.

Sensors (Basel). 2019-6-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索