Hatos István, Hargitai Hajnalka, Fekete Gusztáv, Fekete Imre
Department of Material Science and Technology, Audi Hungária Faculty of Vehicle Engineering, Széchenyi István University, H-9026 Győr, Hungary.
Materials (Basel). 2024 Jul 11;17(14):3432. doi: 10.3390/ma17143432.
The unusual combination of the fundamentally contradictory properties of high tensile strength and high fracture toughness found in maraging steel makes it well suited for safety-critical applications that require high strength-to-weight materials. In certain instances, additive manufacturing (AM) has produced materials that may be desirable for safety-critical applications where impact toughness is a key property, such as structural parts for the aerospace industry or armor plates for military applications. Understanding the influence of process parameters and defect structure on the properties of maraging steel parts produced via laser powder bed fusion (LPBF) is a fundamental step towards the broader use of AM technologies for more demanding applications. In this research, the impact energy of V-notched specimens made of 1.2709 maraging steel produced by LPBF was determined via Charpy impact testing. Specimens were produced using different processing parameter sets. By combining the process parameters with the porosity values of the parts, we demonstrate that an almost full prediction of the impact properties can be achieved, paving the way for significantly reducing the expenses of destructive testing.
马氏体时效钢中发现的高强度和高断裂韧性这两种基本相互矛盾的特性的不寻常组合,使其非常适合于需要高强度重量比材料的安全关键应用。在某些情况下,增材制造(AM)生产出的材料可能适用于以冲击韧性为关键特性的安全关键应用,例如航空航天工业的结构部件或军事应用的装甲板。了解工艺参数和缺陷结构对通过激光粉末床熔融(LPBF)生产的马氏体时效钢零件性能的影响,是朝着更广泛地将增材制造技术用于要求更高的应用迈出的基本一步。在本研究中,通过夏比冲击试验测定了由LPBF生产的1.2709马氏体时效钢制成的V型缺口试样的冲击能量。使用不同的工艺参数集生产试样。通过将工艺参数与零件的孔隙率值相结合,我们证明可以几乎完全预测冲击性能,为大幅降低破坏性试验成本铺平了道路。