Adamczyk Bartosz, Dudek Magdalena, Zych Anita, Gajek Marcin, Sitarz Maciej, Ziąbka Magdalena, Dudek Piotr, Grzywacz Przemysław, Witkowska Małgorzata, Kowalska Joanna, Mech Krzysztof, Sokołowski Krystian
Faculty of Energy and Fuels, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland.
Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland.
Materials (Basel). 2024 Jul 15;17(14):3503. doi: 10.3390/ma17143503.
This paper presents a study of the characteristic effects of the physicochemical properties of microcrystalline cellulose and a series of biocarbon samples produced from this raw material through thermal conversion at temperatures ranging from 200 °C to 850 °C. Structural studies revealed that the biocarbon samples produced from cellulose had a relatively low degree of graphitization of the carbon and an isometric shape of the carbon particles. Based on thermal investigations using the differential thermal analysis/differential scanning calorimeter method, obtaining fully formed biocarbon samples from cellulose feedstock was possible at about 400 °C. The highest direct carbon solid oxide fuel cell (DC-SOFC) performance was found for biochar samples obtained via thermal treatment at 400-600 °C. The pyrolytic gases from cellulose decomposition had a considerable impact on the achieved current density and power density of the DC-SOFCs supplied by pure cellulose samples or biochars derived from cellulose feedstock at a lower temperature range of 200-400 °C. For the DC-SOFCs supplied by biochars synthesised at higher temperatures of 600-850 °C, the "shuttle delivery mechanism" had a substantial effect. The impact of the carbon oxide concentration in the anode or carbon bed was important for the performance of the DC-SOFCs. Carbon oxide oxidised at the anode to form carbon dioxide, which interacted with the carbon bed to form more carbon oxide. The application of biochar obtained from cellulose alone without an additional catalyst led to moderate electrochemical power output from the DC-SOFCs. The results show that catalysts for the reverse Boudouard reactions occurring in a biocarbon bed are critical to ensuring high performance and stable operation under electrical load, which is crucial for DC-SOFC development.
本文介绍了一项关于微晶纤维素的物理化学性质以及由该原料在200℃至850℃温度范围内通过热转化制备的一系列生物炭样品的特性影响的研究。结构研究表明,由纤维素制备的生物炭样品的碳石墨化程度相对较低,且碳颗粒呈等轴状。基于使用差示热分析/差示扫描量热法进行的热研究,在约400℃时可以从纤维素原料中获得完全形成的生物炭样品。对于通过在400 - 600℃进行热处理获得的生物炭样品,发现其具有最高的直接碳固体氧化物燃料电池(DC - SOFC)性能。在200 - 400℃的较低温度范围内,纤维素分解产生的热解气体对由纯纤维素样品或源自纤维素原料的生物炭供应的DC - SOFC的电流密度和功率密度有相当大的影响。对于由在600 - 850℃较高温度下合成的生物炭供应的DC - SOFC,“穿梭传递机制”具有重要影响。阳极或碳床中氧化碳排放对DC - SOFC的性能很重要。二氧化碳在阳极被氧化形成二氧化碳,二氧化碳与碳床相互作用形成更多的氧化碳排放。单独使用由纤维素获得的生物炭而不添加额外催化剂会导致DC - SOFC产生适度的电化学功率输出。结果表明,生物炭床中发生的逆布多阿尔反应的催化剂对于确保在电负载下的高性能和稳定运行至关重要,这对DC - SOFC的发展至关重要。