Szroeder Paweł, Ziółkowski Przemysław, Sahalianov Ihor, Madajski Piotr, Trzcinski Marek
Faculty of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland.
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
Materials (Basel). 2024 Jul 17;17(14):3532. doi: 10.3390/ma17143532.
The hydroxylated carbon nanotubes (CNTs-OH), due to their propensity to trap electrons, are considered in many applications. Despite many case studies, the effect of the electronic structure of the CNT-OH electrode on its oxidation properties has not received in-depth analysis. In the present study, we used Fe(CN) and Ru(NH) as redox probes, which differ in charge. The CNT-OH and CNT electrodes used in the cyclic voltammetry were in the form of freestanding films. The concentration of holes in the CNTs-OH, estimated from the upshift of the Raman G-feature, was 2.9×1013 cm-2. The standard rate constant of the heterogeneous electron transfer (HET) between Fe(CN) and the CNTs-OH electrode was 25.9×10-4 cm·s-1. The value was more than four times higher than the HET rate on the CNT electrode (ks=6.3×10-4 cm·s-1), which proves excellent boosting of the redox reaction by the holes. The opposite effect was observed for the Ru(NH) redox couple. While the redox reaction rate constant at the CNT electrode was 1.4×10-4 cm·s-1, there was a significant suppression of the redox reaction at the CNT-OH electrode (ks<0.1×10-4 cm·s-1). Based on the DFT calculations and the Gerischer model, we find that the boosting of the HET from the reduced form of the redox couple to CNT-OH occurs when the reduced forms of the redox couples are negatively charged and the occupied reduced states are aligned with acceptor states of the nanotube electrode.
由于具有捕获电子的倾向,羟基化碳纳米管(CNTs-OH)在许多应用中受到关注。尽管有许多案例研究,但CNT-OH电极的电子结构对其氧化性能的影响尚未得到深入分析。在本研究中,我们使用了电荷不同的Fe(CN)和Ru(NH)作为氧化还原探针。循环伏安法中使用的CNT-OH和CNT电极均为独立薄膜形式。根据拉曼G峰的上移估计,CNTs-OH中的空穴浓度为2.9×10¹³ cm⁻²。Fe(CN)与CNTs-OH电极之间的异相电子转移(HET)标准速率常数为25.9×10⁻⁴ cm·s⁻¹。该值比CNT电极上的HET速率(ks = 6.3×10⁻⁴ cm·s⁻¹)高出四倍多,这证明空穴对氧化还原反应有出色的促进作用。对于Ru(NH)氧化还原对则观察到相反的效果。虽然CNT电极上的氧化还原反应速率常数为1.4×10⁻⁴ cm·s⁻¹,但CNT-OH电极上的氧化还原反应受到显著抑制(ks < 0.1×10⁻⁴ cm·s⁻¹)。基于密度泛函理论(DFT)计算和Gerischer模型,我们发现当氧化还原对的还原形式带负电荷且占据的还原态与纳米管电极的受体态对齐时,会发生从氧化还原对的还原形式到CNT-OH的HET促进。