Sahalianov Ihor, Singh Sandeep Kumar, Tybrandt Klas, Berggren Magnus, Zozoulenko Igor
Laboratory of Organic Electronics, ITN, Linköping University 60174 Norrköping Sweden
Wallenberg Wood Science Center, Linköping University 60174 Norrköping Sweden.
RSC Adv. 2019 Dec 20;9(72):42498-42508. doi: 10.1039/c9ra10250g. eCollection 2019 Dec 18.
The capacitance of conducting polymers represents one of the most important material parameters that in many cases determines the device and material performances. Despite a vast number of experimental studies, the theoretical understanding of the origin of the capacitance in conducting polymers remains unsatisfactory and appears even controversial. Here, we present a theoretical method, based on first principle capacitance calculations using density functional theory (DFT), and apply it to calculate the volumetric capacitance of two archetypical conducting polymers: poly(3,4-ethylene dioxythiophene) (PEDOT) and polypyrrole (PPy). Our aim is to achieve a quantitate description of the volumetric capacitance and to provide a qualitative understanding of its nature at the atomistic level. We find that the volumetric capacitance of PEDOT and PPy is ≈100 F cm and ≈300 F cm, respectively, which is within the range of the corresponding reported experimental results. We demonstrate that the capacitance of conducting polymers originates from charges stored in atomistic Stern layers formed by counterions and doped polymeric chains. The Stern layers have a purely electrostatic origin, since the counterions do not form any bonds with the atoms of the polymeric chains, and no charge transfer between the counterions and conducting polymer takes place. This classifies the conducting polymers as double-layer supercapacitors rather than pseudo-capacitors. Further, we analyze contributions to the total capacitance originating from the classical capacitance and the quantum capacitance , respectively, and find that the latter provides a dominant contribution. The method of calculations of the capacitance developed in the present paper is rather general and opens up the way for engineering and optimizing the capacitive response of the conducting polymers.
导电聚合物的电容是许多情况下决定器件和材料性能的最重要材料参数之一。尽管有大量的实验研究,但对导电聚合物中电容起源的理论理解仍不尽人意,甚至存在争议。在此,我们提出一种基于密度泛函理论(DFT)的第一性原理电容计算的理论方法,并将其应用于计算两种典型导电聚合物:聚(3,4 - 亚乙基二氧噻吩)(PEDOT)和聚吡咯(PPy)的体积电容。我们的目标是实现对体积电容的定量描述,并在原子层面上对其性质进行定性理解。我们发现PEDOT和PPy的体积电容分别约为100 F/cm³ 和约300 F/cm³,这在相应报道的实验结果范围内。我们证明导电聚合物的电容源于由抗衡离子和掺杂聚合物链形成的原子级斯特恩层中存储的电荷。斯特恩层具有纯粹的静电起源,因为抗衡离子与聚合物链的原子不形成任何化学键,并且在抗衡离子和导电聚合物之间不发生电荷转移。这将导电聚合物归类为双层超级电容器而非赝电容器。此外,我们分别分析了经典电容 和量子电容 对总电容的贡献,发现后者起主导作用。本文中开发的电容计算方法相当通用,为设计和优化导电聚合物的电容响应开辟了道路。