Suppr超能文献

磷石膏中氟化物去除的综述:基于机器学习方法的定量分析

A Review of Fluoride Removal from Phosphorous Gypsum: A Quantitative Analysis via a Machine Learning Approach.

作者信息

Jin Huagui, Wang Yixiao, An Xuebin, Wang Shizhao, Wang Yunshan, Yang Gang, Shi Lufang, Sun Yong

机构信息

School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.

Department of Chemical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK.

出版信息

Materials (Basel). 2024 Jul 22;17(14):3606. doi: 10.3390/ma17143606.

Abstract

This review comprehensively explores fluoride removal from phosphogypsum, focusing on its composition, fluorine-containing compounds, characterization methods, and defluorination techniques. It initially outlines the elemental composition of phosphogypsum prevalent in major production regions and infers the presence of fluorine compounds based on these constituents. The study highlights X-ray photoelectron spectroscopy (XPS) as a pivotal method for characterizing fluorine compounds, emphasizing its capability to determine precise binding energies essential for identifying various fluorine species. Additionally, the first-principle density functional theory (DFT) is employed to estimate binding energies of different fluorine-containing compounds. Significant correlations are observed between the total atomic energy of binary fluorides (e.g., of alkali metals, earth metals, and boron group metals) and XPS binding energies. However, for complex compounds like calcium fluorophosphate, correlations with the calculated average atomic total energy are less direct. The review categorizes defluorination methods applied to phosphogypsum as physical, chemical, thermal, and thermal-combined processes, respectively. It introduces neural network machine learning (ML) technology to quantitatively analyze and optimize reported defluorination strategies. Simulation results indicate potential optimizations based on quantitative analyses of process conditions reported in the literature. This review provides a systematic approach to understanding the phosphogypsum composition, fluorine speciation, analytical methodologies, and effective defluorination strategies. The attempts of adopting DFT simulation and quantitative analysis using ML in optimization underscore its potential and feasibility in advancing the industrial phosphogypsum defluorination process.

摘要

本综述全面探讨了磷石膏脱氟,重点关注其组成、含氟化合物、表征方法和脱氟技术。它首先概述了主要生产地区普遍存在的磷石膏的元素组成,并根据这些成分推断含氟化合物的存在。该研究强调X射线光电子能谱(XPS)是表征含氟化合物的关键方法,强调其确定识别各种氟物种所需精确结合能的能力。此外,采用第一性原理密度泛函理论(DFT)来估计不同含氟化合物的结合能。观察到二元氟化物(如碱金属、碱土金属和硼族金属的氟化物)的总原子能量与XPS结合能之间存在显著相关性。然而,对于氟磷酸钙等复杂化合物,与计算出的平均原子总能量的相关性不太直接。该综述将应用于磷石膏的脱氟方法分别归类为物理、化学、热和热联合过程。它引入神经网络机器学习(ML)技术来定量分析和优化报道的脱氟策略。模拟结果表明,基于对文献中报道的工艺条件的定量分析,存在潜在的优化。本综述提供了一种系统的方法来理解磷石膏的组成、氟形态、分析方法和有效的脱氟策略。在优化中采用DFT模拟和使用ML进行定量分析的尝试强调了其在推进工业磷石膏脱氟过程中的潜力和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f94e/11279332/e83ff6cfa30d/materials-17-03606-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验