Filippatos Petros-Panagis, Soultati Anastasia, Kelaidis Nikolaos, Petaroudis Christos, Alivisatou Anastasia-Antonia, Drivas Charalampos, Kennou Stella, Agapaki Eleni, Charalampidis Georgios, Yusoff Abd Rashid Bin Mohd, Lathiotakis Nektarios N, Coutsolelos Athanassios G, Davazoglou Dimitris, Vasilopoulou Maria, Chroneos Alexander
Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research Demokritos, Agia Paraskevi, 15310, Athens, Greece.
Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry, CV1 5FB, UK.
Sci Rep. 2021 Mar 11;11(1):5700. doi: 10.1038/s41598-021-81979-x.
Titanium dioxide (TiO) has a strong photocatalytic activity in the ultra-violet part of the spectrum combined with excellent chemical stability and abundance. However, its photocatalytic efficiency is prohibited by limited absorption within the visible range derived from its wide band gap value and the presence of charge trapping states located at the band edges, which act as electron-hole recombination centers. Herein, we modify the band gap and improve the optical properties of TiO via co-doping with hydrogen and halogen. The present density functional theory (DFT) calculations indicate that hydrogen is incorporated in interstitial sites while fluorine and chlorine can be inserted both as interstitial and oxygen substitutional defects. To investigate the synergy of dopants in TiO experimental characterization techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray and ultra-violet photoelectron spectroscopy (XPS/UPS), UV-Vis absorption and scanning electron microscopy (SEM) measurements, have been conducted. The observations suggest that the oxide's band gap is reduced upon halogen doping, particularly for chlorine, making this material promising for energy harvesting devices. The studies on hydrogen production ability of these materials support the enhanced hydrogen production rates for chlorine doped (Cl:TiO) and hydrogenated (H:TiO) oxides compared to the pristine TiO reference.
二氧化钛(TiO₂)在光谱的紫外部分具有很强的光催化活性,同时具有出色的化学稳定性和丰富性。然而,由于其宽带隙值导致在可见光范围内的吸收有限,以及位于带边的电荷俘获态的存在(这些电荷俘获态充当电子 - 空穴复合中心),其光催化效率受到限制。在此,我们通过氢和卤素的共掺杂来改变TiO₂的带隙并改善其光学性质。目前的密度泛函理论(DFT)计算表明,氢掺入间隙位置,而氟和氯既可以作为间隙缺陷也可以作为氧替代缺陷插入。为了研究TiO₂中掺杂剂的协同作用,已经进行了诸如傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、X射线和紫外光电子能谱(XPS/UPS)、紫外可见吸收光谱以及扫描电子显微镜(SEM)测量等实验表征技术。观察结果表明,卤素掺杂会降低该氧化物的带隙,特别是对于氯掺杂,这使得这种材料在能量收集装置方面具有潜力。与原始TiO₂参考样品相比,对这些材料产氢能力的研究支持了氯掺杂(Cl:TiO₂)和氢化(H:TiO₂)氧化物的产氢速率有所提高。